scispace - formally typeset
Journal ArticleDOI

Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry

Reads0
Chats0
TLDR
It is shown that proton or silicon centers can activate the exchange of S�F bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis.
Abstract
Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed.

read more

Citations
More filters
Journal ArticleDOI

Nickel-Catalyzed Direct Cross-Coupling of Aryl Fluorosulfates with Aryl Bromides.

TL;DR: In this article , a one-pot cross-coupling of aryl fluorosulfate with bromide was proposed, which avoids the use of a preprepared/commercial organometallic reagent.
Journal ArticleDOI

A General Procedure for the Construction of 2-Alkyl-Substituted Vinyl Sulfonyl Fluoride.

Xu Zhang, +1 more
- 08 Dec 2022 - 
TL;DR: In this article , a series of compact and multifunctional 2-alkyl-substituted vinyl sulfonyl fluorides were efficiently prepared from the corresponding alkyl iodides and 2-chloroprop-2-ene-1-sulfonyl fluoride (CESF).
Journal ArticleDOI

Synthesis of 2-arylethenesulfonyl fluorides and isoindolinones: Ru-catalyzed C-H activation of nitrones with ethenesulfonyl fluoride.

TL;DR: In this paper , a strategy for the synthesis of 2-arylethenesulfonyl fluorides from nitrones and ethenes sulfonyl fluoride by the activation of the C-H bond using an inexpensive and readily available Ru-catalyst has been developed.
Journal ArticleDOI

Regio- and Stereoselective Installation of Bromide onto Vinyl Sulfonyl Fluorides: Construction of a Class of Versatile Sulfur Fluoride Exchange Hubs.

Xu Zhang, +2 more
- 27 May 2022 - 
TL;DR: In this paper , a convenient protocol for the exclusively regio-and stereoselective installation of a bromine atom on the 2-arylvinylsulfonyl fluorides using lithium bromide (LiBr) as the source was described.
Journal ArticleDOI

Fluorosulfate-containing pyrazole heterocycles as selective BuChE inhibitors: structure-activity relationship and biological evaluation for the treatment of Alzheimer’s disease

TL;DR: In vivo behavioural study showed that K3 treatment improved the Aβ 1 − 42-induced cognitive impairment, and significantly prevented the effects of Aβ’s disease toxicity, suggesting that selective BuChE inhibitor K3 has potential to be further developed as AD therapeutics.
References
More filters
Journal ArticleDOI

Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Journal ArticleDOI

Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.

TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Journal ArticleDOI

1,3-Dipolar Cycloadditions. Past and Future†

TL;DR: In contrast to the very large number of special methods applicable to syntheses in the heterocyclic series, relatively few general methods are available as discussed by the authors, and the 1,3-dipolar addition offers a remarkably wide range of utility in the synthesis of five-membered heterocycles.
Journal ArticleDOI

A Strain-Promoted [3 + 2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems

TL;DR: A strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.
Related Papers (5)