scispace - formally typeset
Journal ArticleDOI

The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death

Junying Yuan, +1 more
- 01 Oct 1992 - 
- Vol. 116, Iss: 2, pp 309-320
TLDR
Mutations in the gene ced-4 block almost all of the programmed cell deaths that normally occur during Caenorhabditis elegans development and two regions of the putative Ced-4 protein product show some similarity to known calcium-binding domains.
Abstract
Mutations in the gene ced-4 block almost all of the programmed cell deaths that normally occur during Caenorhabditis elegans development. We have cloned the ced-4 gene using a ced-4 mutation caused by the insertion of the transposon Tc4. When microinjected into a ced-4 animal, a 4.4 kb DNA fragment derived from the wild-type strain and corresponding to the region of the Tc4 insertion in the mutant ced-4(n1416) rescues the Ced-4 mutant phenotype. The ced-4 gene encodes a 2.2 kb RNA transcript. This mRNA is expressed primarily during embryogenesis, when most programmed cell deaths occur. The Ced-4 protein, as deduced from cDNA and genomic DNA clones, is 549 amino acids in length. Two regions of the putative Ced-4 protein product show some similarity to known calcium-binding domains.

read more

Citations
More filters
Journal ArticleDOI

Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade

TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
Journal ArticleDOI

Cell Death: Critical Control Points

TL;DR: The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.
Journal ArticleDOI

Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.

TL;DR: The identification of a novel protein, Smac, which promotes caspase activation in the cytochrome c/Apaf-1/caspase-9 pathway and increases cells' sensitivity to apoptotic stimuli is reported.
Journal ArticleDOI

Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3

TL;DR: The purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3, leading to apoptosis is reported here.
Journal ArticleDOI

Mechanisms and genes of cellular suicide

TL;DR: Genetic studies in the nematode Caenorhabditis elegans and in the fruit fly Drosophila melanogaster have led to the isolation of genes that are specifically required for the induction of programmed cell death.
References
More filters
Journal ArticleDOI

Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.

TL;DR: A method has been devised for the electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets that results in quantitative transfer of ribosomal proteins from gels containing urea.
Journal ArticleDOI

The genetics of caenorhabditis elegans

TL;DR: In this paper, the authors describe methods for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm.
Journal Article

The genetics of Caenorhabditis elegans.

Daniel S. Brenner, +1 more
- 29 Apr 1974 - 
TL;DR: Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C. elegans are large.
Journal ArticleDOI

The embryonic cell lineage of the nematode Caenorhabditis elegans.

TL;DR: It is concluded that the cell lineage itself, complex as it is, plays an important role in determining cell fate and is demonstrated to demonstrate substantial cell autonomy in at least some sections of embryogenesis.
Journal ArticleDOI

Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing.

TL;DR: A method is described for the rapid generation and cloning of deletion derivatives well-suited for the sequencing of long stretches of DNA based on two useful features of exonuclease III: processive digestion at a very uniform rate and failure to initiate digestion at DNA ends with four-base 3'-protrusions.
Related Papers (5)