scispace - formally typeset
Open AccessJournal ArticleDOI

The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei

TLDR
In this article, the authors present an updated and revised analysis of the relationship between the H{beta} broadline region (BLR) radius and the luminosity of the active galactic nucleus (AGN).
Abstract
We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19more » {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.« less

read more

Citations
More filters
Journal ArticleDOI

New approach to the broad-line-region radius in Mrk142 after considering potential short-term optical transient quasi-periodic oscillations

TL;DR: In this paper, a new approach to estimate the radius of the broad line region of a broad line AGN is proposed, considering optical transient quasi-periodic oscillations (QPOs) with periodicities around 14 days and 43 days.
Journal ArticleDOI

The Dust-to-Gas Ratio and the Role of Radiation Pressure in Luminous, Obscured Quasars

TL;DR: In this paper, the authors compile constraints on obscuration and Eddington ratio for samples of X-ray, optical, infrared, and submm selected AGN at quasar luminosities.
Journal ArticleDOI

Variability and the Size-Luminosity Relation of the Intermediate-mass AGN in NGC 4395

TL;DR: In this article, the authors presented the variability study of the lowest-luminosity Seyfert 1 galaxy NGC 4395 based on the photometric monitoring campaigns in 2017 and 2018.
Journal ArticleDOI

Line Shape Variability in a Sample of AGN with Broad Lines

Abstract: The spectral variability of active galactic nuclei (AGN) is one of the key features that enables us to study in more detail, the structure of AGN emitting regions. Especially, the broad line profiles that vary both in flux and shape, give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. The main aim of this campaign is to study the physics and kinematics of the BLR on a uniform data set, focusing on the problems of the photoionization heating of the BLR and its geometry, where, in this paper, we give for a first time, a comparative analysis of the variabilty of five type 1 AGNs, discussing their complex BLR physics and geometry in the framework of the estimates of the supermassive black hole mass in AGN.
Journal ArticleDOI

Variability and the size-luminosity relation of the intermediate mass AGN in NGC 4395

TL;DR: In this article, the authors presented the variability study of the lowest-luminosity Seyfert 1 galaxy NGC 4395 based on the photometric monitoring campaigns in 2017 and 2018.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Book

Numerical Recipes in FORTRAN

TL;DR: The Diskette v 2.04, 3.5'' (720k) for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Journal ArticleDOI

Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD

TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Journal ArticleDOI

Measuring Reddening with SDSS Stellar Spectra and Recalibrating SFD

TL;DR: Lee et al. as discussed by the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the SEGUE Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u-g, g-r, r-i, and i-z, per star.
Related Papers (5)