scispace - formally typeset
Open AccessJournal ArticleDOI

The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

TLDR
The role of plant-associated bacteria to enhance trace element availability in the rhizosphere is reviewed and the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants are reported and discussed to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction.
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

read more

Citations
More filters
Book ChapterDOI

Plant-microbe interaction: Relevance for phytoremediation of heavy metals

TL;DR: In this paper, the potential role of root-associated microorganisms in the remediation of heavy metal-contaminated soils, with an additional discussion on biochemical and molecular mechanisms of plant-microbe interactions.
Posted ContentDOI

Anthropogenic remediation of heavy metals selects against natural microbial remediation

TL;DR: It is shown that raising pH by liming decreased the availability of toxic metals in acidic mine-degraded soils, but as a consequence selected against microbial taxa that naturally remediate soil through the production of metal-scavenging siderophores.
Journal ArticleDOI

Soil properties drive the bacterial community to cadmium contamination in the rhizosphere of two contrasting wheat (Triticum aestivum L.) genotypes.

TL;DR: In this paper , pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cdc-accuming genotype (HT), grown on four different soils with Cd contamination.
Journal ArticleDOI

At the roots of chocolate: understanding and optimizing the cacao root-associated microbiome for ecosystem services. A review

TL;DR: In this paper , the potential of cacao root-associated microbiomes to solve current challenges to production by increasing provisioning of ecosystem services is discussed, which will alleviate the reliance on external inputs and contribute to more sustainable cacao production systems.
Book ChapterDOI

Plant-specific microbiome for environmental stress management: Issues and challenges

TL;DR: In this paper, the authors highlight the plant-specific microbiome that may provide effective and sustainable increase crop production under both biotic and abiotic stress conditions and will ultimately lead to food and nutrient security around the world.
References
More filters
Journal ArticleDOI

Microbial heavy-metal resistance

TL;DR: This review describes the workings of known metal-resistance systems in microorganisms and the transport of the 17 most important (heavy metal) elements is compared.

Terrestrial higher plants which hyperaccumulate metallic elements. a review of their distribution, ecology and phytochemistry

TL;DR: Phytochemical studies suggest that hyperaccumulation is closely linked to the mechanism of metal tolerance involved in the successful colonization of metalliferous and otherwise phytotoxic soils.
Journal ArticleDOI

Organic acids in the rhizosphere: a critical review

TL;DR: In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Journal ArticleDOI

Accumulators and excluders ?strategies in the response of plants to heavy metals

TL;DR: In this paper, two basic strategies of plant response are suggested, accumulators and excluders, which do not generally suppress metal uptake but result in internal detoxification, and indicators are seen as a further mode of response where proportional relationships exist between metal levels in the soil, uptake and accumulation in plant parts.
Journal ArticleDOI

An efficient microbiological growth medium for screening phosphate solubilizing microorganisms

TL;DR: The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, and soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate soluble inorganic phosphates in liquid medium.
Related Papers (5)