scispace - formally typeset
Open AccessJournal ArticleDOI

The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

TLDR
The role of plant-associated bacteria to enhance trace element availability in the rhizosphere is reviewed and the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants are reported and discussed to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction.
Abstract
Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

read more

Citations
More filters
Journal ArticleDOI

In Situ Remediation Technology for Heavy Metal Contaminated Sediment: A Review

TL;DR: In this article , the state-of-the-art in situ in situ remediation technology for contaminated sediment was elaborated, including water diversion, capping, electrokinetic remediation, chemical amendments, bioremediation and combined remediation.
Book ChapterDOI

Endophytic Microbes: Prospects and Their Application in Abiotic Stress Management and Phytoremediation

TL;DR: Present chapter endeavors to review the dynamic role of endophytes in abiotic stress management and their possible application in environmental cleanup for sustainable environment development.
Journal ArticleDOI

Rhizosphere Management for Phytoremediation of Copper Mine Tailings

TL;DR: In this article, the authors describe the new advances in the directed use of soil microorganisms and amendments, and discuss the advantages for phytoremediation processes, mainly focused on the stabilization of mine tailing, which has become one of the most serious environmental problems in places where the mining activities are of magnitude.
Journal ArticleDOI

Plant-Aid Remediation of Hydrocarbon-Contaminated Sites

TL;DR: In this paper, the main goal of the paper is to improve the understanding of phytoremediation of organic pollutants with emphasis on hydrocarbons, and also to design and enhance the efficiency of their systems.
Journal ArticleDOI

Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil.

TL;DR: The results show that U. breviscapa bacterial diversity varied according to the geographic isolation site but not the analyzed organs (utricle and stolon), and it was reported that six genera were common to both sample sites (São Paulo and Mato Grosso).
References
More filters
Journal ArticleDOI

Microbial heavy-metal resistance

TL;DR: This review describes the workings of known metal-resistance systems in microorganisms and the transport of the 17 most important (heavy metal) elements is compared.

Terrestrial higher plants which hyperaccumulate metallic elements. a review of their distribution, ecology and phytochemistry

TL;DR: Phytochemical studies suggest that hyperaccumulation is closely linked to the mechanism of metal tolerance involved in the successful colonization of metalliferous and otherwise phytotoxic soils.
Journal ArticleDOI

Organic acids in the rhizosphere: a critical review

TL;DR: In this article, a review of the role of organic acids in rhizosphere processes is presented, which includes information on organic acid levels in plants (concentrations, compartmentalisation, spatial aspects, synthesis), plant efflux (passive versus active transport, theoretical versus experimental considerations), soil reactions (soil solution concentrations, sorption) and microbial considerations (mineralization).
Journal ArticleDOI

Accumulators and excluders ?strategies in the response of plants to heavy metals

TL;DR: In this paper, two basic strategies of plant response are suggested, accumulators and excluders, which do not generally suppress metal uptake but result in internal detoxification, and indicators are seen as a further mode of response where proportional relationships exist between metal levels in the soil, uptake and accumulation in plant parts.
Journal ArticleDOI

An efficient microbiological growth medium for screening phosphate solubilizing microorganisms

TL;DR: The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, and soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate soluble inorganic phosphates in liquid medium.
Related Papers (5)