scispace - formally typeset
Journal ArticleDOI

The SOHO/LASCO CME Catalog

Reads0
Chats0
TLDR
The SOHO/LASCO CME catalog as mentioned in this paper is a data base for the analysis of coronal mass ejections (CMEs) in the solar corona.
Abstract
Coronal mass ejections (CMEs) are routinely identified in the images of the solar corona obtained by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) since 1996. The identified CMEs are measured and their basic attributes are cataloged in a data base known as the SOHO/LASCO CME Catalog. The Catalog also contains digital data, movies, and plots for each CME, so detailed scientific investigations can be performed on CMEs and the related phenomena such as flares, radio bursts, solar energetic particle events, and geomagnetic storms. This paper provides a brief description of the Catalog and summarizes the statistical properties of CMEs obtained using the Catalog. Data products relevant to space weather research and some CME issues that can be addressed using the Catalog are discussed. The URL of the Catalog is: http://cdaw.gsfc.nasa.gov/CME_list.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Detection of spike-like structures near the front of type-II bursts

TL;DR: In this article, the authors examined high-time resolution dynamic spectra for fine structures in type II solar radio bursts using the Artemis-JLS (ARTEMIS-IV) solar radio spectrograph.
Journal ArticleDOI

Stationarity and periodicities of linear speed of coronal mass ejection: a statistical signal processing approach

TL;DR: In this paper, the authors used double exponential smoothing and Discrete Wavelet Transform (DWT) for detrending and filtering of the CME linear speed time series.
Journal ArticleDOI

Remote Sensing Estimates of CME Density in the Ecliptic Using the STEREO Heliospheric Imagers

TL;DR: In this article, a method to estimate electron densities in the ecliptic plane using the STEREO Heliospheric Imagers (HIs) is presented, which is applied to the Earth-impacting coronal mass ejection (CME) launched on 12 December 2008.
Journal ArticleDOI

An operational solar wind prediction system transitioning fundamental science to operations

TL;DR: Wang et al. as mentioned in this paper presented an operational solar wind prediction system consisting of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection
References
More filters
Journal ArticleDOI

The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy

TL;DR: The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission as discussed by the authors.
Book ChapterDOI

The Large Angle Spectroscopic Coronagraph (LASCO)

TL;DR: The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d'Astronomie Spatiale (France), the Max-Planck-Institut fur Aeronomie (Germany), and the University of Birmingham (UK) as discussed by the authors.
Journal ArticleDOI

Waves: The Radio and Plasma Wave Investigation on the Wind Spacecraft

TL;DR: The WAVES investigation on the WIND spacecraft will provide comprehensive measurements of the radio and plasma wave phenomena which occur in Geospace as mentioned in this paper, in coordination with the other onboard plasma, energetic particles, and field measurements will help us understand the kinetic processes that are important in the solar wind and in key boundary regions of the Geospace.
Journal ArticleDOI

Interplanetary acceleration of coronal mass ejections

TL;DR: In this article, an empirical model was proposed to predict the arrival of CMEs at 1 AU, based on the relation between the acceleration and initial speed of the CME.
Related Papers (5)