scispace - formally typeset
Open AccessBook

Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex

Elie Bienenstock, +2 more
- pp 437-455
TLDR
The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework and a synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete.
Abstract
The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents complete. The change in the efficacy of a given synapse depends not only on instantaneous pre- and postsynaptic activities but also on a slowly varying time-averaged value of the postsynaptic activity. Assuming an appropriate nonlinear form this dependence, development of selectivity is obtained under quite general conditions on the sensory environment. One does not require nonlinearity of the neuron's integrative power nor does one need to assume any particular form for intracortical circuitry. This is first illustrated in simple cases, e.g., when the environment consists of only two different stimuli presented alternately in a random manner. The following formal statement then holds: the state of the system converges with probability 1 to points of maximum selectivity in the state space. We next consider the problem of early development of orientation selectivity and binocular interaction in primary visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and ocular dominance comparable to what is observed in normally reared adult cats or monkeys. Simulations with binocular input and various types of normal or altered environments show good agreement with the relevant experimental data. Experiments are suggested that could test our theory further.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The free-energy principle: a unified brain theory?

TL;DR: This Review looks at some key brain theories in the biological and physical sciences from the free-energy perspective, suggesting that several global brain theories might be unified within a free- energy framework.
Journal ArticleDOI

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

TL;DR: The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Journal ArticleDOI

LTP and LTD: an embarrassment of riches.

TL;DR: This work reviews those forms of LTP and LTD for which mechanisms have been most firmly established and examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.
Journal ArticleDOI

Alignment by Maximization of Mutual Information

TL;DR: A new information-theoretic approach is presented for finding the pose of an object in an image that works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation.
Journal ArticleDOI

Synaptic Activity and the Construction of Cortical Circuits

TL;DR: The sequential combination of spontaneously generated and experience-dependent neural activity endows the brain with an ongoing ability to accommodate to dynamically changing inputs during development and throughout life.
References
More filters
Journal ArticleDOI

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex

TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Journal ArticleDOI

A Theory of Cerebellar Cortex

TL;DR: A detailed theory of cerebellar cortex is proposed whose consequence is that the cerebellum learns to perform motor skills and two forms of input—output relation are described, both consistent with the cortical theory.
Journal ArticleDOI

Self-organization of orientation sensitive cells in the striata cortex

TL;DR: A nerve net model for the visual cortex of higher vertebrates is presented and a simple learning procedure is shown to be sufficient for the organization of some essential functional properties of single units.
Journal ArticleDOI

Binocular interaction in striate cortex of kittens reared with artificial squint.

TL;DR: The object of the present study was to influence cortical connections by some means less drastic than covering one or both eyes, and produced a divergent strabismus by cutting one of the extraocular muscles in each of four newborn kittens.
Related Papers (5)