scispace - formally typeset
Open AccessJournal ArticleDOI

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

Guo-Qiang Bi, +1 more
- 15 Dec 1998 - 
- Vol. 18, Iss: 24, pp 10464-10472
TLDR
The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Abstract
In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.

read more

Citations
More filters
Journal ArticleDOI

Millisecond-timescale, genetically targeted optical control of neural activity.

TL;DR: In this paper, the authors adapted the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons.
Journal ArticleDOI

Nanoscale Memristor Device as Synapse in Neuromorphic Systems

TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Journal ArticleDOI

Competitive Hebbian learning through spike-timing-dependent synaptic plasticity

TL;DR: In modeling studies, it is found that this form of synaptic modification can automatically balance synaptic strengths to make postsynaptic firing irregular but more sensitive to presynaptic spike timing.
Journal ArticleDOI

Synaptic plasticity: taming the beast

TL;DR: This work reviews three Hebbian forms of plasticity—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discusses their functional implications.
Journal ArticleDOI

Neurophysiological and Computational Principles of Cortical Rhythms in Cognition

TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
References
More filters
Journal ArticleDOI

Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.

TL;DR: The extracellular patch clamp method, which first allowed the detection of single channel currents in biological membranes, has been further refined to enable higher current resolution, direct membrane patch potential control, and physical isolation of membrane patches.
Journal ArticleDOI

A synaptic model of memory: long-term potentiation in the hippocampus

TL;DR: The best understood form of long-term potentiation is induced by the activation of the N-methyl-d-aspartate receptor complex, which allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and post Synaptic mechanisms to generate a persistent increase in synaptic strength.
Book

The organization of behavior

D. O. Hebb
Journal ArticleDOI

Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.

TL;DR: The after‐effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro‐electrodes in rabbits anaesthetized with urethane.
Journal ArticleDOI

Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs

TL;DR: In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of post Synaptic action potentials and unitary excitatory postsynaptic potentials was found to induce changes in EPSPs.
Related Papers (5)