scispace - formally typeset
Open AccessJournal ArticleDOI

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction

TLDR
In this article, a single-particle model was proposed to predict the lifetime of rechargeable batteries with graphite anodes based on limited accelerated aging data for short times and elevated temperatures.
Abstract
Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by the single-particle model. We also extend the theory to rapidly degrading anodes, such as nanostructured silicon, which exhibit large expansion on ion intercalation. In such cases, large area changes during cycling promote SEI loss and faster SEI growth. Our simple models are able to accurately fit a variety of published experimental data for graphite and silicon anodes.

read more

Citations
More filters
Journal ArticleDOI

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Journal ArticleDOI

30 Years of Lithium-Ion Batteries.

TL;DR: The main roles of material science in the development of LIBs are discussed, with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Journal ArticleDOI

Data-driven prediction of battery cycle life before capacity degradation

TL;DR: In this article, a machine learning method was used to predict battery lifetime before the onset of capacity degradation with high accuracy. But, the prediction often cannot be made unless a battery has already degraded significantly.
References
More filters
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a lithium anode/solid polymer separator/insertion cathode cell is modeled using concentrated solution theory, which is general enough to include a wide range of polymeric separator materials, lithium salts, and composite insertion cathodes.
Journal ArticleDOI

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries

TL;DR: The solid electrolyte interphase (SEI) is a protecting layer formed on the negative electrode of Li-ion batteries as a result of electrolyte decomposition, mainly during the first cycle as discussed by the authors.
Journal ArticleDOI

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells

TL;DR: In this paper, a review of methodologies adopted for reducing the capacity fade observed in silicon-based anodes, discuss the challenges that remain in using silicon and siliconbased anode, and propose possible approaches for overcoming them.
Journal ArticleDOI

Intercalation compounds of graphite

TL;DR: A broad review of recent research work on the preparation and the remarkable properties of intercalation compounds of graphite can be found in this paper, covering a wide range of topics from the basic chemistry, physics and materials science to engineering applications.
Related Papers (5)