scispace - formally typeset
Open AccessJournal ArticleDOI

Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations

TLDR
The aged-rejuvenation-glue-liquid (ARGL) shear band model has been proposed for metallic glasses based on small-scale molecular dynamics simulations up to 20,000 atoms and thermomechanical analysis as mentioned in this paper.
Abstract
The aged-rejuvenation-glue-liquid (ARGL) shear band model has been proposed for metallic glasses (Acta Mater. 54 (2006) 4293), based on small-scale molecular dynamics simulations up to 20,000 atoms and thermomechanical analysis. The model predicts the existence of a critical lengthscale � 10 nm, above which melting could occur in shear-alienated glass. Large-scale molecular dynamics simulations with up to 5 million atoms have directly verified this prediction. When the applied stress exceeds the glue traction (computed separately before in a shear cohesive zone, or an amorphous-amorphous ‘‘generalized stacking fault energy’’ calculation), we indeed observe maturation of the shear band embryo into bona fide shear crack, accompanied by melting. In contrast, when the applied stress is below the glue traction, the shear band embryo does not propagate, becomes diffuse, and eventually dies. Thus this all-important quantity, the glue traction which is a property of shearalienated glass, controls the macroscopic yield point of well-aged glass. We further suggest that the disruption of chemical short-range order (‘‘chemical softening’’) governs the glue traction microscopically. Catastrophic thermal softening occurs only after chemical alienation and softening in our simulation, after the shear band embryo has already run a critical length. [doi:10.2320/matertrans.MJ200769]

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool

TL;DR: The Open Visualization Tool (OVITO) as discussed by the authors is a 3D visualization software designed for post-processing atomistic data obtained from molecular dynamics or Monte Carlo simulations, which is written in object-oriented C++, controllable via Python scripts and easily extendable through a plug-in interface.
Journal ArticleDOI

Strain-engineered artificial atom as a broad-spectrum solar energy funnel

TL;DR: A highly strained ultrathin membrane of MoS2 could lead to the creation of a solar funnel, a new form of solar cell which absorbs a much broader range of the solar spectrum that a usual single junction device as discussed by the authors.
Journal ArticleDOI

Atomistic modeling of interfaces and their impact on microstructure and properties

TL;DR: An overview of the most recent developments in the area of atomistic modeling with emphasis on interfaces and their impact on microstructure and properties of materials is given in this paper, along with some challenges and future research directions in this field.
Journal ArticleDOI

Probing topological protection using a designer surface plasmon structure.

TL;DR: In this paper, it was shown that the elastic strain limit and corresponding strength of submicron-sized metallic glass specimens are about twice as high as the already impressive elastic limit observed in bulk metallic glass samples.
Book

Modeling Materials: Continuum, Atomistic and Multiscale Techniques

TL;DR: In this paper, the authors present the complete fundamentals of multiscale modeling for graduate students and researchers in physics, materials science, chemistry, and engineering, with examples drawn from modern research on the thermodynamic properties of crystalline solids.
References
More filters
Journal ArticleDOI

Dynamics of viscoplastic deformation in amorphous solids

TL;DR: In this article, a dynamical theory of low-temperature shear deformation in amorphous solids is proposed based on molecular-dynamics simulations of a two-dimensional, two-component non-crystalline system.
Journal ArticleDOI

Tight-binding potentials for transition metals and alloys.

TL;DR: The parameters of many-body potentials for fcc and hcp transition metals, based on the second-moment approximation of a tight-binding Hamiltonian, have been systematically evaluated and good quantitative agreement with the experimental data up to temperatures close to the melting point is found.
Journal ArticleDOI

Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis

TL;DR: In this paper, a three-dimensional finite deformation cohesive element and a class of irreversible cohesive laws are proposed to track dynamic growing cracks in a drop-weight dynamic fracture test.
Journal ArticleDOI

AtomEye: an efficient atomistic configuration viewer

TL;DR: AtomEye is free atomistic visualization software for all major UNIX platforms, based on a newly developed graphics core library of higher quality than the X-window standard, with area-weighted anti-aliasing.
Journal ArticleDOI

Hidden structure in liquids

TL;DR: In this article, the canonical partition function for classical many-body systems is transformed so that the temperature-independent packing statistics and the thermal excitations are uniquely separated, and the results suggest that melting hinges upon defect softening in the quenched packings, and a crude "theory" of melting for the Gaussian core model is developed.
Related Papers (5)