scispace - formally typeset
Journal ArticleDOI

Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer

Juan Bisquert
- 01 Jan 2002 - 
- Vol. 106, Iss: 2, pp 325-333
TLDR
In this paper, the small signal ac impedance of electron diffusion and recombination in a spatially restricted situation with application in systems such as porous TiO2 nanostructured photoelectrodes and intrinsically conducting polymers is analyzed.
Abstract
This paper analyzes the small signal ac impedance of electron diffusion and recombination in a spatially restricted situation with application in systems such as porous TiO2 nanostructured photoelectrodes and intrinsically conducting polymers. It is shown that the diffusion−recombination model with the main types of boundary conditions assumes a finite set of possible behaviors in the frequency domain, which are classified according to relevant physical parameters. There are four possible cases:  (i) the impedance of finite diffusion with reflecting boundary, (ii) the impedance of finite diffusion with absorbing boundary, (iii) the impedance of diffusion-reaction in semiinfinite space or Gerischer impedance, and (iv) the impedance that combines Warburg response at high frequency and a reaction arc at low frequency. The generality of the approach is discussed in terms of the spatial distribution of the electrochemical potential or quasi-Fermi level and also in terms of the transmission line representation....

read more

Citations
More filters
Journal ArticleDOI

Solar energy conversion by dye-sensitized photovoltaic cells

TL;DR: Developing solar cells that are based on the sensitization of mesoscopic oxide films by dyes or quantum dots, and the examples for the first outdoor application of such solar cells will be provided.
Journal ArticleDOI

Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells

TL;DR: The EIS measurements show that DSC performance variations under prolonged thermal aging result mainly from the decrease in the lifetime of the conduction band electron in the TiO2 film.
Journal ArticleDOI

Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells

TL;DR: Two new heteroleptic polypyridyl ruthenium complexes are reported with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell.
Journal ArticleDOI

Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy

TL;DR: In this paper, the main features of the characteristic impedance spectra of dye-sensitized solar cells are described in a wide range of potential conditions: from open to short circuit.
Journal ArticleDOI

Characteristics of high efficiency dye-sensitized solar cells.

TL;DR: Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO2 solar cells with high efficiencies of light to electricity conversion of 11.1% and 10.2%, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb

TL;DR: In this paper, an electrochemical galvanostatic intermittent titration technique (GITT) is described which combines both transient and steady-state measurements to obtain kinetic properties of solid mixed-conducting electrodes, as well as thermodynamic data.
Related Papers (5)