scispace - formally typeset
Open AccessBook

Thermodynamics and an Introduction to Thermostatistics

TLDR
The Canonical Formalism Statistical Mechanics in the Entropy Representation as mentioned in this paper is a generalization of statistical mechanics in the Helmholtz Representation, and it has been applied to general systems.
Abstract
GENERAL PRINCIPLES OF CLASSICAL THERMODYNAMICS. The Problem and the Postulates. The Conditions of Equilibrium. Some Formal Relationships, and Sample Systems. Reversible Processes and the Maximum Work Theorem. Alternative Formulations and Legendre Transformations. The Extremum Principle in the Legendre Transformed Representations. Maxwell Relations. Stability of Thermodynamic Systems. First--Order Phase Transitions. Critical Phenomena. The Nernst Postulate. Summary of Principles for General Systems. Properties of Materials. Irreversible Thermodynamics. STATISTICAL MECHANICS. Statistical Mechanics in the Entropy Representation: The Microanonical Formalism. The Canonical Formalism Statistical Mechanics in Helmholtz Representation. Entropy and Disorder Generalized Canonical Formulations. Quantum Fluids. Fluctuations. Variational Properties, Perturbation Expansions, and Mean Field Theory. FOUNDATIONS. Postlude: Symmetry and the Conceptual Foundations of Thermostatistics. Appendices. General References. Index.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanisms of pulsed laser ablation of biological tissues.

TL;DR: It was found that the structure and morphology also affect the energy transport among tissue constituents and therefore the ablation efficiency of biological tissues is increased.
Journal ArticleDOI

The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis

TL;DR: In this article, a review compares and unifies viewpoints on water oxidation from various fields of catalysis research, including thermodynamic efficiency and mechanisms of electrochemical water splitting by metal oxides on electrode surfaces, explaining the recent concept of the potential determining step.
Journal ArticleDOI

Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation.

TL;DR: Comparisons with the thermodynamic theory of phase transitions show that the lattice-Boltzmann-equation model can be made to correspond exactly to an isothermal process.
Journal ArticleDOI

Molecular dynamics: survey of methods for simulating the activity of proteins.

TL;DR: This review offers an outline of the origin of molecular dynamics simulation for protein systems and how it has developed into a robust and trusted tool, and covers more recent advances in theory and an illustrative selection of practical studies in which it played a central role.
Journal ArticleDOI

Thermodynamics of information

TL;DR: In this article, the authors present a theoretical framework for the thermodynamics of information based on stochastic thermodynamics and fluctuation theorems, review some recent experimental results, and present an overview of the state of the art in the field.