scispace - formally typeset
Journal ArticleDOI

Three-Dimensional Ultrasound Imaging

Reads0
Chats0
TLDR
A review article describes the developments of a number of 3D ultrasound imaging systems using mechanical, free-hand and 2D array scanning techniques and the sources of errors in the reconstruction techniques as well as formulae relating design specification to geometric errors.
Abstract
Ultrasound is an inexpensive and widely used imaging modality for the diagnosis and staging of a number of diseases. In the past two decades, it has benefited from major advances in technology and has become an indispensable imaging modality, due to its flexibility and non-invasive character. In the last decade, research investigators and commercial companies have further advanced ultrasound imaging with the development of 3D ultrasound. This new imaging approach is rapidly achieving widespread use with numerous applications. The major reason for the increase in the use of 3D ultrasound is related to the limitations of 2D viewing of 3D anatomy, using conventional ultrasound. This occurs because: (a) Conventional ultrasound images are 2D, yet the anatomy is 3D, hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to variability and incorrect diagnoses. (b) The 2D ultrasound image represents a thin plane at some arbitrary angle in the body. It is difficult to localize the image plane and reproduce it at a later time for follow-up studies. In this review article we describe how 3D ultrasound imaging overcomes these limitations. Specifically, we describe the developments of a number of 3D ultrasound imaging systems using mechanical, free-hand and 2D array scanning techniques. Reconstruction and viewing methods of the 3D images are described with specific examples. Since 3D ultrasound is used to quantify the volume of organs and pathology, the sources of errors in the reconstruction techniques as well as formulae relating design specification to geometric errors are provided. Finally, methods to measure organ volume from the 3D ultrasound images and sources of errors are described.

read more

Citations
More filters
Posted Content

Realistic Ultrasonic Environment Simulation Using Conditional Generative Adversarial Networks.

TL;DR: In this article, a novel approach for synthetic ultrasonic signal simulation using conditional GANs (cGANs) is presented, which is the first realistic data augmentation for automotive ultrasonics.
Journal ArticleDOI

Three-dimensional color camera based on optical coherence tomography

TL;DR: Experimental measurement of a coin demonstrates the potential of the3D color camera to be further developed to record 3D color images or video of moving objects.
Proceedings ArticleDOI

New approaches to calibration and segmentation in interventional ultrasound

TL;DR: New approaches to ultrasound (US) probe calibration and US image segmentation that are developed for computationally guided minimally invasive interventions are outlined and new model-based methods for segmenting anatomic structures using tissue stiffness properties calculated from displacement and strain images are presented.
Book ChapterDOI

Carotid Plaque Surface Irregularity

TL;DR: Methods have been developed to assess carotid plaque heterogeneity1,2 and echogenicity1,3 and their improvements are continuing.
Journal ArticleDOI

Thickness-designable acoustic metamaterial for passive phased arrays

TL;DR: In this paper , a labyrinth resonant cavity metascreen phased array based on Helmholtz resonators and convoluted labyrinth acoustic metamaterials was proposed for noninvasive ultrasonic therapy, including nondestructive testing, acoustic communication, and biomedical imaging.
References
More filters
Journal ArticleDOI

Deformable models in medical image analysis: a survey

TL;DR: The rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, including segmentation, shape representation, matching and motion tracking is reviewed.
Journal ArticleDOI

Efficient ray tracing of volume data

TL;DR: This paper presents a front-to-back image-order volume-rendering algorithm and discusses two techniques for improving its performance, which employs a pyramid of binary volumes to encode spatial coherence present in the data and uses an opacity threshold to adaptively terminate ray tracing.
Journal ArticleDOI

Review of MR image segmentation techniques using pattern recognition.

TL;DR: This paper has reviewed, with somewhat variable coverage, the nine MR image segmentation techniques itemized in Table II; each has its merits and drawbacks.
Journal ArticleDOI

Magnetic Position and Orientation Tracking System

TL;DR: In this article, linear rotation transformations based upon the previous measurements are applied to both the source excitation and sensor output vectors, yielding quantities that are linearly propotional to small changes in the position and orientation.
Journal ArticleDOI

Multidimensional transfer functions for interactive volume rendering

TL;DR: An important class of 3D transfer functions for scalar data is demonstrated, and the application of multi-dimensional transfer functions to multivariate data is described, and a set of direct manipulation widgets that make specifying such transfer functions intuitive and convenient are presented.
Related Papers (5)