scispace - formally typeset
Open AccessJournal ArticleDOI

Universal linear optics

Reads0
Chats0
TLDR
In this paper, a sixmode universal system consisting of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip was demonstrated.
Abstract
Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.

read more

Citations
More filters
Journal ArticleDOI

Photonic quantum information processing: a review

TL;DR: The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field with a due balance between theoretical, experimental and technological results.

Complexity-theoretic foundations of quantum supremacy experiments

TL;DR: General theoretical foundations are laid for how to use special-purpose quantum computers with 40--50 high-quality qubits to demonstrate "quantum supremacy": that is, a clear quantum speedup for some task, motivated by the goal of overturning the Extended Church-Turing Thesis as confidently as possible.
Journal ArticleDOI

Laguerre-Gaussian mode sorter.

TL;DR: In this paper, the authors present a multi-plane light conversion scheme for large number of spatial modes in a scalable fashion, where the number of phase plates required scales with the dimensionality of the transformation.
Journal ArticleDOI

Silicon Quantum Photonics

TL;DR: In this paper, the authors provide context to the development of quantum optics in silicon and identify the challenges that must be faced and their potential solutions for silicon quantum photonics to make quantum technology a reality.
Journal ArticleDOI

Linear programmable nanophotonic processors

TL;DR: Progress in such “programmable nanophotonic processors” as well as emerging applications of the technology to problems including classical and quantum information processing and machine learning are covered.
References
More filters
Book ChapterDOI

I and J

Book

Quantum Computation and Quantum Information

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.

Quantum Computation and Quantum Information

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Journal ArticleDOI

A scheme for efficient quantum computation with linear optics.

TL;DR: It is shown that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors and are robust against errors from photon loss and detector inefficiency.
Journal ArticleDOI

Measurement of subpicosecond time intervals between two photons by interference.

TL;DR: A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion.
Related Papers (5)