scispace - formally typeset
Open AccessPosted Content

Wavelets on Graphs via Spectral Graph Theory

TLDR
In this paper, the spectral graph wavelet operator is defined based on spectral decomposition of the discrete graph Laplacian, and a wavelet generating kernel and a scale parameter are used to localize this operator to an indicator function.
Abstract
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian $\L$. Given a wavelet generating kernel $g$ and a scale parameter $t$, we define the scaled wavelet operator $T_g^t = g(t\L)$. The spectral graph wavelets are then formed by localizing this operator by applying it to an indicator function. Subject to an admissibility condition on $g$, this procedure defines an invertible transform. We explore the localization properties of the wavelets in the limit of fine scales. Additionally, we present a fast Chebyshev polynomial approximation algorithm for computing the transform that avoids the need for diagonalizing $\L$. We highlight potential applications of the transform through examples of wavelets on graphs corresponding to a variety of different problem domains.

read more

Citations
More filters
Journal ArticleDOI

Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images

TL;DR: Experimental results show that the proposed multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB on average in peak signal-to-noise ratio at the same bit rate.
Posted Content

Residual Gated Graph ConvNets

Xavier Bresson, +1 more
- 20 Nov 2017 - 
TL;DR: This work reviews existing graph RNN and ConvNet architectures, and proposes natural extension of LSTM and Conv net to graphs with arbitrary size, and designs a set of analytically controlled experiments on two basic graph problems to test the different architectures.
Journal ArticleDOI

Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification

TL;DR: The experimental results on three real-life HSI data sets show that the proposed semisupervised learning framework, $\text{S}^{2}$ GCN can significantly improve the classification accuracy.
Proceedings ArticleDOI

Learning Structural Node Embeddings Via Diffusion Wavelets.

TL;DR: GraphWave is developed, a method that represents each node's network neighborhood via a low-dimensional embedding by leveraging heat wavelet diffusion patterns and mathematically proves that nodes with similar network neighborhoods will have similar GraphWave embeddings even though these nodes may reside in very different parts of the network, and the method scales linearly with the number of edges.
Journal ArticleDOI

Dynamic graph convolutional networks

TL;DR: In this paper, two novel approaches are proposed, which combine Long Short-Term Memory networks and Graph Convolutional Networks to learn long short-term dependencies together with graph structure.
References
More filters
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Proceedings ArticleDOI

Object recognition from local scale-invariant features

TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Book

Ten lectures on wavelets

TL;DR: This paper presents a meta-analyses of the wavelet transforms of Coxeter’s inequality and its applications to multiresolutional analysis and orthonormal bases.
Book

Functional analysis

Walter Rudin
Journal ArticleDOI

Ten Lectures on Wavelets

TL;DR: In this article, the regularity of compactly supported wavelets and symmetry of wavelet bases are discussed. But the authors focus on the orthonormal bases of wavelets, rather than the continuous wavelet transform.
Related Papers (5)