scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Reads0
Chats0
TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Posted Content

Efficient Deep Neural Networks

TL;DR: This dissertation focuses on improving the efficiency of deep neural networks at four levels, using automated neural architecture search algorithms to discover models with state-of-the-art accuracy and efficiency.
Posted Content

Efficient Hybrid Network Architectures for Extremely Quantized Neural Networks Enabling Intelligence at the Edge.

TL;DR: This work demonstrates an effective way of hybridizing networks which achieve performance close to full-precision networks while attaining significant compression, furthering the feasibility of using such networks for energy-efficient neural computing in IOT-based edge devices.
Book ChapterDOI

Deep Learning for Semantic Segmentation on Minimal Hardware

TL;DR: In this article, an approach based on semantic segmentation is proposed to transfer the success of deep learning to small mobile robots with minimal hardware, which can further handle multiple image dimensions without retraining, it does not require specific domain knowledge for achieving a high frame rate and it is applicable on a minimal mobile hardware.
Journal ArticleDOI

AWARE-CNN: Automated Workflow for Application-Aware Real-Time Edge Acceleration of CNNs

TL;DR: AWARE-CNN framework’s flexibility with respect to the targeted convolutional neural networks and user constraints is validated by targeting additional design points for AlexNet and Tiny YOLOv2, and the ability to execute Tiny DarkNet and shallow MobileNet inference is demonstrated.
Journal ArticleDOI

Skin Lesion Segmentation Using Local Binary Convolution-Deconvolution Architecture

TL;DR: This framework employs the local binary convolution on U-net architecture instead of the standard convolution in order to reduced-size deep convolutional encoder-decoder network that adopts loss function for robust segmentation and outperforms most of the existing state-of-art.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)