Institution
University of North Carolina at Charlotte
Education•Charlotte, North Carolina, United States•
About: University of North Carolina at Charlotte is a(n) education organization based out in Charlotte, North Carolina, United States. It is known for research contribution in the topic(s): Population & Poison control. The organization has 8772 authors who have published 22239 publication(s) receiving 562529 citation(s). The organization is also known as: UNC Charlotte & UNCC.
Topics: Population, Poison control, Health care, Visualization, Mental health
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
9,821 citations
[...]
Theo Vos1, Amanuel Alemu Abajobir, Kalkidan Hassen Abate2, Cristiana Abbafati3 +775 more•Institutions (305)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.
Abstract: Summary Background As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016. Methods We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8–75·9 million [7·2%, 6·0–8·3]), 45·1 million (29·0–62·8 million [5·6%, 4·0–7·2]), 36·3 million (25·3–50·9 million [4·5%, 3·8–5·3]), 34·7 million (23·0–49·6 million [4·3%, 3·5–5·2]), and 34·1 million (23·5–46·0 million [4·2%, 3·2–5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3–3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0–11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimer's disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862–11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018–19 228). Interpretation The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response. Funding Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.
8,768 citations
[...]
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.
6,805 citations
[...]
TL;DR: The Posttraumatic Growth Inventory as mentioned in this paper is an instrument for assessing positive outcomes reported by persons who have experienced traumatic events, which includes factors of New Possibilities, Relating to Others, Personal Strength, Spiritual Change, and Appreciation of Life.
Abstract: The development of the Posttraumatic Growth Inventory, an instrument for assessing positive outcomes reported by persons who have experienced traumatic events, is described. This 21-item scale includes factors of New Possibilities, Relating to Others, Personal Strength, Spiritual Change, and Appreciation of Life. Women tend to report more benefits than do men, and persons who have experienced traumatic events report more positive change than do persons who have not experienced extraordinary events. The Posttraumatic Growth Inventory is modestly related to optimism and extraversion. The scale appears to have utility in determining how successful individuals, coping with the aftermath of trauma, are in reconstructing or strengthening their perceptions of self, others, and the meaning of events.
3,602 citations
[...]
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4 +1025 more•Institutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).
Abstract: Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries—Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NCDs) comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22·7% (21·5–23·9), representing an additional 7·61 million (7·20–8·01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7·9% (7·0–8·8). The number of deaths for CMNN causes decreased by 22·2% (20·0–24·0) and the death rate by 31·8% (30·1–33·3). Total deaths from injuries increased by 2·3% (0·5–4·0) between 2007 and 2017, and the death rate from injuries decreased by 13·7% (12·2–15·1) to 57·9 deaths (55·9–59·2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000–289 000) globally in 2007 to 352 000 (334 000–363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118·0% (88·8–148·6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36·4% (32·2–40·6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33·6% (31·2–36·1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respiratory infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990—neonatal disorders, lower respiratory infections, and diarrhoeal diseases—were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Funding Bill & Melinda Gates Foundation.
3,396 citations
Authors
Showing all 8772 results
Name | H-index | Papers | Citations |
---|---|---|---|
Chao Zhang | 127 | 3119 | 84711 |
E. Magnus Ohman | 124 | 622 | 68976 |
Staffan Kjelleberg | 114 | 425 | 44414 |
Kenneth L. Davis | 113 | 622 | 61120 |
David Wilson | 102 | 757 | 49388 |
Michael Bauer | 100 | 1052 | 56841 |
David A. B. Miller | 96 | 702 | 38717 |
Ashutosh Chilkoti | 95 | 414 | 32241 |
Chi-Wang Shu | 93 | 529 | 56205 |
Gang Li | 93 | 486 | 68181 |
Tiefu Zhao | 90 | 593 | 36856 |
Juan Carlos García-Pagán | 90 | 348 | 25573 |
Denise C. Park | 88 | 267 | 33158 |
Santosh Kumar | 80 | 1196 | 29391 |
Chen Chen | 76 | 853 | 24974 |