scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Reads0
Chats0
TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Proceedings ArticleDOI

MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints

TL;DR: This work describes how several common DNNs, when subjected to state-of-the art optimizations, trade off accuracy for resource use such as memory, computation, and energy, and introduces two new and powerful DNN optimizations that exploit it.
Proceedings ArticleDOI

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

TL;DR: The design of a BNN accelerator is presented that is synthesized from C++ to FPGA-targeted Verilog and outperforms existing FPGAs-based CNN accelerators in GOPS as well as energy and resource efficiency.
Proceedings ArticleDOI

Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?

TL;DR: This paper evaluates a selection of emerging DNN algorithms on two generations of Intel FPGAs (Arria'10, Stratix'10) against the latest highest performance Titan X Pascal GPU, and presents a detailed case study on accelerating Ternary ResNet, indicating that FPGA may become the platform of choice for accelerating next-generation DNNs.
Journal ArticleDOI

Scaling for edge inference of deep neural networks

TL;DR: There are increasing gaps between the computational complexity and energy efficiency required for the continued scaling of deep neural networks and the hardware capacity actually available with current CMOS technology scaling, in situations where edge inference is required.
Journal ArticleDOI

Binary Neural Networks: A Survey

TL;DR: A comprehensive survey of algorithms proposed for binary neural networks, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error are presented.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)