scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Proceedings ArticleDOI

MobileDeepPill: A Small-Footprint Mobile Deep Learning System for Recognizing Unconstrained Pill Images

TL;DR: A deep learning-based pill image recognition algorithm that significantly reduces the size of the multi-CNNs model without deteriorating its recognition performance wins the First Prize (champion) of the NIH NLM Pill Image Recognition Challenge.
Proceedings Article

Efficient Sparse-Winograd Convolutional Neural Networks

TL;DR: In this paper, the authors proposed two modifications to Winograd-based CNNs to enable these methods to exploit sparsity, which can reduce the number of multiplications needed to perform the convolutions.
Posted Content

Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks

TL;DR: The impact of an exemplary hardware fault attack, Rowhammer, is studied to show that a Rowhammer enabled attacker co-located in the same physical machine can inflict significant accuracy drops even with single bit-flip corruptions and no knowledge of the model.
Proceedings ArticleDOI

Explicit Loss-Error-Aware Quantization for Low-Bit Deep Neural Networks

TL;DR: This paper proposes Explicit Loss-error-aware Quantization (ELQ), a new method that can train DNN models with very low-bit parameter values such as ternary and binary ones to approximate 32-bit floating-point counterparts without noticeable loss of predication accuracy.
Journal ArticleDOI

Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead

TL;DR: This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)