scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Reads0
Chats0
TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Posted Content

A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects

TL;DR: This review introduces the history of CNN, some classic and advanced CNN models are introduced, and an overview of various convolutions is provided, including those key points making them reach state-of-the-art results.
Proceedings ArticleDOI

Towards Optimal Structured CNN Pruning via Generative Adversarial Learning

TL;DR: This paper proposes an effective structured pruning approach that jointly prunes filters as well as other structures in an end-to-end manner and effectively solves the optimization problem by generative adversarial learning (GAL), which learns a sparse soft mask in a label-free and an end to end manner.
Book ChapterDOI

Convolutional Neural Networks

Nikhil Ketkar
TL;DR: Convolution Neural Networks (CNNs) in essence are neural networks that employ the convolution operation (instead of a fully connected layer) as one of its layers.
Proceedings ArticleDOI

Bit fusion: bit-level dynamically composable architecture for accelerating deep neural networks

TL;DR: This work designs Bit Fusion, a bit-flexible accelerator that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers, and compares it to two state-of-the-art DNN accelerators, Eyeriss and Stripes.
Journal ArticleDOI

Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis

TL;DR: The problem of parallelization in DNNs is described from a theoretical perspective, followed by approaches for its parallelization, and potential directions for parallelism in deep learning are extrapolated.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)