scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Reads0
Chats0
TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Posted Content

Hardware-Oriented Approximation of Convolutional Neural Networks

TL;DR: Ristretto is a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers and can condense models by using fixed point arithmetic and representation instead of floating point.
Posted Content

Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning

TL;DR: Zhang et al. as discussed by the authors proposed an energy-aware pruning algorithm for CNNs that directly uses energy consumption estimation of a CNN to guide the pruning process, and the energy estimation methodology uses parameters extrapolated from actual hardware measurements that target realistic battery-powered system setups.
Proceedings ArticleDOI

NSGA-Net: neural architecture search using multi-objective genetic algorithm

TL;DR: Experimental results suggest that combining the dual objectives of minimizing an error metric and computational complexity, as measured by FLOPs, allows NSGA-Net to find competitive neural architectures.
Journal ArticleDOI

UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking

TL;DR: This work performs a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset.
Posted Content

Towards Accurate Binary Convolutional Neural Network

TL;DR: The implementation of the resulting binary CNN, denoted as ABC-Net, is shown to achieve much closer performance to its full-precision counterpart, and even reach the comparable prediction accuracy on ImageNet and forest trail datasets, given adequate binary weight bases and activations.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)