scispace - formally typeset
Open AccessPosted Content

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

TLDR
XNOR-Nets as discussed by the authors approximate convolutions using primarily binary operations, which results in 58x faster convolutional operations and 32x memory savings, and outperforms BinaryConnect and BinaryNets by large margins on ImageNet.
Abstract
We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

read more

Citations
More filters
Proceedings ArticleDOI

Cambricon-s: addressing irregularity in sparse neural networks through a cooperative software/hardware approach

TL;DR: A software-based coarse-grained pruning technique, together with local quantization, significantly reduces the size of indexes and improves the network compression ratio and a hardware accelerator is designed to address the remaining irregularity of sparse synapses and neurons efficiently.
Proceedings Article

Loss-aware Binarization of Deep Networks

TL;DR: This paper proposes a proximal Newton algorithm with diagonal Hessian approximation that directly minimizes the loss w.r.t. the binarized weights in deep neural network models.
Posted Content

PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

TL;DR: In this paper, a method for adding multiple tasks to a single deep neural network while avoiding catastrophic forgetting is presented, which exploits redundancies in large deep networks to free up parameters that can then be employed to learn new tasks.
Posted Content

A Survey on Methods and Theories of Quantized Neural Networks

Yunhui Guo
- 13 Aug 2018 - 
TL;DR: A thorough review of different aspects of quantized neural networks is given, recognized as one of the most effective approaches to satisfy the extreme memory requirements that deep neural network models demand.
Journal ArticleDOI

AutoPruner: An end-to-end trainable filter pruning method for efficient deep model inference

TL;DR: This paper proposes an efficient channel selection layer, namely AutoPruner, to find less important filters automatically in a joint training manner and empirically demonstrates that the gradient information of this channel selectionlayer is also helpful for the whole model training.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)