scispace - formally typeset
Search or ask a question

Showing papers on "Oxoglutarate dehydrogenase complex published in 2000"


Journal ArticleDOI
TL;DR: It is reported that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: alpha-ketoglutarate dehydrogenase and succinate dehydrogenases and aconitase, respectively.
Abstract: Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: α-ketoglutarate dehydrogenase and succinate dehydrogenase In contrast, aconitase, shows decreased activity in the presence of the metal ion Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle A possible correlation between aluminum, the Krebs cycle and aging processes is discussed

89 citations


Book ChapterDOI
TL;DR: The three-dimensional structure of the 3 alpha, 20 beta-HSD carbenoxolone complex unequivocally verifies the postulated active site of the enzyme, shows that inhibition is a result of direct competition with the substrate for binding, and provides a plausible model for the mechanism of inhibition of 11 beta-hydroxysteroid dehydrogenase by carben oxolone.
Abstract: Steroid dehydrogenase enzymes influence mammalian reproduction, hypertension, neoplasia, and digestion. The three-dimensional structures of steroid dehydrogenase enzymes reveal the position of the catalytic triad, a possible mechanism of keto-hydroxyl interconversion, a molecular mechanism of inhibition, and the basis for selectivity. Glycyrrhizic acid, the active ingredient in licorice, and its metabolite carbenoxolone are potent inhibitors of human 11 beta-hydroxysteroid dehydrogenase and bacterial 3 alpha, 20 beta-hydroxysteroid dehydrogenase (3 alpha, 20 beta-HSD). The three-dimensional structure of the 3 alpha, 20 beta-HSD carbenoxolone complex unequivocally verifies the postulated active site of the enzyme, shows that inhibition is a result of direct competition with the substrate for binding, and provides a plausible model for the mechanism of inhibition of 11 beta-hydroxysteroid dehydrogenase by carbenoxolone. The structure of the ternary complex of human 17 beta-hydroxysteroid dehydrogenase type 1 (17 beta-HSD) with the cofactor NADP+ and the antiestrogen equilin reveals the details of binding of an inhibitor in the active site of the enzyme and the possible roles of various amino acids in the catalytic cleft. The short-chain dehydrogenase reductase (SDR) family includes these steroid dehydrogenase enzymes and more than 60 other proteins from human, mammalian, insect, and bacterial sources. Most members of the family contain the tyrosine and lysine of the catalytic triad in a YxxxK sequence. X-ray crystal structures of 13 members of the family have been completed. When the alpha-carbon backbone of the cofactor binding domains of the structures are superimposed, the conserved residues are at the core of the structure and in the cofactor binding domain, but not in the substrate binding pocket.

81 citations


Journal ArticleDOI
TL;DR: A number of cyanobacteria from different taxonomic groups exhibited very low levels of uptake of 2-[U-(14)C]oxoglutarate, which was detrimental to the growth of a Synechococcus sp.
Abstract: A number of cyanobacteria from different taxonomic groups exhibited very low levels of uptake of 2-[U-(14)C]oxoglutarate. Synechococcus sp. strain PCC 7942 was transformed with DNA constructs carrying the Escherichia coli kgtP gene encoding a 2-oxoglutarate permease and a kanamycin resistance gene cassette. The Synechococcus sp. strains bearing the kgtP gene incorporated 2-oxoglutarate into the cells through an active transport process. About 75% of the radioactivity from the 2-[U-(14)C]oxoglutarate taken up that was recovered in soluble metabolites was found as glutamate and glutamine. 2-Oxoglutarate was, however, detrimental to the growth of a Synechococcus sp. strain bearing the kgtP gene.

75 citations


Journal ArticleDOI
TL;DR: Comparison of the enzymatic characteristics of the heterologously expressed human and rat dehydrogenases with those of purified rat liver trimethylaminobutyraldehyde dehydrogenase revealed that the three enzymes have highly similar substrate specificities.

71 citations



Journal ArticleDOI
TL;DR: From steady-state inhibition experiments with substrate analogs, two substrate-binding modes are revealed at different degrees of saturation of the enzyme with 2-oxoglutarate, and it is concluded that one of these complexes is formed at the site that is sterically identical to the substrate inhibition site.
Abstract: The 2-oxoglutarate dehydrogenase complex was purified from Azotobacter vinelandii. The complex consists of three components, 2-oxoglutarate dehydrogenase/decarboxylase (E1o), lipoate succinyltransferase (E2o) and lipoamide dehydrogenase (E3). Upon purification, the E3 component dissociates partially from the complex. From reconstitution experiments, the Kd for E3 was found to be 26 nM, about 30 times higher than that for the pyruvate dehydrogenase complex. The Km values for the substrates 2-oxoglutarate, CoA and NAD+ were found to be 0.15, 0.014 and 0.17 mM, respectively. The system has a high specificity for 2-oxoglutarate, which is determined by the action of both E1o and E2o. Above 4 mM substrate inhibition is observed. From steady-state inhibition experiments with substrate analogs, two substrate-binding modes are revealed at different degrees of saturation of the enzyme with 2-oxoglutarate. At low substrate concentrations (10(-6) to 10(-5) M), the binding mainly depends on the interaction of the enzyme with the substrate carboxyl groups. At a higher degree of substrate saturation (10(-4) to 10(-3) M) the relative contribution of the 2-oxo group in the binding increases. A kinetic analysis points to a single binding site for a substrate analog under steady state conditions. Saturation of this site with an analog indicates that two kinetically different complexes are formed with 2-oxoglutarate in the course of catalysis. From competition studies with analogs it is concluded that one of these complexes is formed at the site that is sterically identical to the substrate inhibition site. The data obtained are represented by a minimal scheme that considers formation of a precatalytic complex SE between the substrate and E1o before the catalytic complex ES, in which the substrate is added to the thiamin diphosphate cofactor, is formed. The incorrect orientation of the substrate molecule in SE or the occupation of this site by analogs is supposed to cause substrate or analog inhibition, respectively.

47 citations


Journal ArticleDOI
01 May 2000-Yeast
TL;DR: Regulation of currently identified genes involved in pyruvate metabolism of Kluyveromyces lactis strain CBS 2359 was studied and the activity of the K. lactis pyruVate dehydrogenase complex appeared to be regulated at the level of KlPDA1 transcription, suggesting that regulation is mostly achieved at the transcriptional level.
Abstract: Regulation of currently identified genes involved in pyruvate metabolism of Kluyveromyces lactis strain CBS 2359 was studied in glucose-limited, ethanol-limited and acetate-limited chemostat cultures and during a glucose pulse added to a glucose-limited steady-state culture. Enzyme activity levels of the pyruvate dehydrogenase complex, pyruvate decarboxylase, alcohol dehydrogenase, acetyl-CoA synthetase and glucose-6-phosphate dehydrogenase were determined in all steady-state cultures. In addition, the mRNA levels of KlADH1-4, KlACS1, KlACS2, KlPDA1, KlPDC1 and RAG1 were monitored under steady-state conditions and during glucose pulses. In K. lactis, as in Saccharomyces cerevisiae, enzymes involved in glucose utilization (glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, pyruvate decarboxylase) showed the highest expression levels on glucose, whereas enzymes required for ethanol or acetate consumption (alcohol dehydrogenase, acetyl-CoA synthetase) showed the highest enzyme activities on ethanol. In cases where mRNA levels were determined, these corresponded well with the corresponding enzyme activities, suggesting that regulation is mostly achieved at the transcriptional level. Surprisingly, the activity of the K. lactis pyruvate dehydrogenase complex appeared to be regulated at the level of KlPDA1 transcription. The conclusions from the steady-state cultures were corroborated by glucose pulse experiments. Overall, expression of the enzymes of pyruvate metabolism in the Crabtree-negative yeast K. lactis appeared to be regulated in the same way as in Crabtree-positive S. cerevisiae, with one notable exception: the PDA1 gene encoding the E1alpha subunit of the pyruvate dehydrogenase complex is expressed constitutively in S. cerevisiae.

33 citations


Journal ArticleDOI
TL;DR: It is shown that elimination of the branched-chain amino acids from the medium of cultured cells results in a two- to threefold increased production of theBrancher-chain α-ketoacid dehydrogenase kinase with a decrease in the activity state of the Branched.
Abstract: Leucine, isoleucine, and valine are used by cells for protein synthesis or are catabolized into sources for glucose and lipid production. These branched-chain amino acids influence proteolysis, hormone release, and cell cycle progression along with their other metabolic roles. The branched-chain amino acids play a central role in regulating cellular protein turnover by reducing autophagy. These essential amino acids are committed to their catabolic fate by the activity of the branched-chain α-ketoacid dehydrogenase complex. Activity of the branched-chain α-ketoacid dehydrogenase complex is regulated by phosphorylation/inactivation of the α-subunit performed by a complex specific kinase. Here we show that elimination of the branched-chain amino acids from the medium of cultured cells results in a two- to threefold increased production of the branched-chain α-ketoacid dehydrogenase kinase with a decrease in the activity state of the branched-chain α-ketoacid dehydrogenase complex. The mechanism cells use to increase kinase production under these conditions involves recruitment of the kinase mRNA into polyribosomes. Promoter activity and the steady-state concentration of the mRNA are unchanged by these conditions.

26 citations


Journal ArticleDOI
TL;DR: The ability of glutathione to block inhibition of NADH-CoQ(1) reductase, PDHC, and alpha-KGDH by scavenging electrophilic intermediates, generated by the mitochondrial membrane-catalyzed oxidation of DHBT-NE-1, forming glutathionyl conjugates are discussed.
Abstract: The major initial product of the oxidation of norepinephrine (NE) in the presence of L-cysteine is 5-S-cysteinylnorepinephrine which is then further easily oxidized to the dihydrobenzothiazine (DHBT) 7-(1-hydroxy-2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1, 4-benzothiazine-3-carboxylic acid (DHBT-NE-1). When incubated with intact rat brain mitochondria, DHBT-NE-1 evokes rapid inhibition of complex I respiration without affecting complex II respiration. DHBT-NE-1 also evokes time- and concentration-dependent irreversible inhibition of NADH-coenzyme Q(1) (CoQ(1)) reductase, the pyruvate dehydrogenase complex (PDHC), and alpha-ketoglutarate dehydrogenase (alpha-KGDH) when incubated with frozen and thawed rat brain mitochondria (mitochondrial membranes). The time dependence of the inhibition of NADH-CoQ(1) reductase, PDHC, and alpha-KGDH by DHBT-NE-1 appears to be related to its oxidation, catalyzed by an unknown component of the inner mitochondrial membrane, to electrophilic intermediates which bind covalently to active site cysteinyl residues of these enzyme complexes. The latter conclusion is based on the ability of glutathione to block inhibition of NADH-CoQ(1) reductase, PDHC, and alpha-KGDH by scavenging electrophilic intermediates, generated by the mitochondrial membrane-catalyzed oxidation of DHBT-NE-1, forming glutathionyl conjugates, several of which have been isolated and spectroscopically identified. The possible implications of these results to the degeneration of neuromelanin-pigmented noradrenergic neurons in the locus ceruleus in Parkinson's disease are discussed.

25 citations


Journal ArticleDOI
TL;DR: Enzymatic activities and energetic states in fibroblasts from lipoamide dehydrogenase-deficient patients representing three different phenotypes and genotypes were evaluated, and direct relationships between clinical parameters such as age of onset and disease severity and biochemical characteristics were identified.

24 citations


Journal ArticleDOI
TL;DR: The enzyme-inhibitor interactions revealed by the molecular modelling investigation of human sorbitol dehydrogenase will be useful in the design of more specific inhibitors.

Journal ArticleDOI
TL;DR: The results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants.
Abstract: Whereas plants and animals use the alpha-aminoadipic acid pathway to catabolize lysine, yeast and fungi use the very same pathway to synthesize lysine. These two groups of organisms also possess structurally distinct forms of two enzymes in this pathway, namely lysine-oxoglutarate reductase (lysine-ketoglutarate reductase; LKR) and saccharopine dehydrogenase (SDH): in plants and animals these enzymes are linked on to a single bifunctional polypeptide, while in yeast and fungi they exist as separate entities. In addition, yeast LKR and SDH possess bi-directional activities, and their anabolic function is regulated by complex transcriptional and post-transcriptional controls, which apparently ascertain differential accumulation of intermediate metabolites; in plants, the regulation of the catabolic function of these two enzymes is not known. To elucidate the regulation of the catabolic function of plant bifunctional LKR/SDH enzymes, we have used yeast as an expression system to test whether a plant LKR/SDH also possesses bi-directional LKR and SDH activities, similar to the yeast enzymes. The Arabidopsis enzyme complemented a yeast SDH, but not LKR, null mutant. Identical results were obtained when deletion mutants encoding only the LKR or SDH domains of this bifunctional polypeptide were expressed individually in the yeast cells. Moreover, activity assays showed that the Arabidopsis LKR possessed catabolic, but not anabolic, activity, and its uni-directional activity stems from its structure rather than its linkage to SDH. Our results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants.

Journal ArticleDOI
TL;DR: It appears that there may be two conformers of E1alpha in the E1 heterotetramer, one being more susceptible to proteolysis than the other, which has important implications for the way in which a tethered lipoyl domain can interact with E1 in the assembled complex.
Abstract: The E1 component (pyruvate decarboxylase) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus is a heterotetramer (alpha2beta2) of E1alpha and E1beta polypeptide chains. The domain structure of the E1alpha and E1beta chains, and the protein-protein interactions involved in assembly, have been studied by means of limited proteolysis. It appears that there may be two conformers of E1alpha in the E1 heterotetramer, one being more susceptible to proteolysis than the other. A highly conserved region in E1alpha, part of a surface loop at the entrance to the active site, is the most susceptible to cleavage in E1 (alpha2beta2). As a result, the oxidative decarboxylation of pyruvate catalysed by E1 in the presence of dichlorophenol indophenol as an artificial electron acceptor is markedly enhanced, but the reductive acetylation of a free lipoyl domain is unchanged. The parameters of the interaction between cleaved E1 and the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase E2 component are identical to those of the wild-type E1. However, a pyruvate dehydrogenase complex assembled in vitro with cleaved E1p exhibits a markedly lower overall catalytic activity than that assembled with untreated E1. This implies that active site coupling between the E1 and E2 components has been impaired. This has important implications for the way in which a tethered lipoyl domain can interact with E1 in the assembled complex.

Journal ArticleDOI
01 Jun 2000-Planta
TL;DR: Size-exclusion chromatography was used to identify an αβ heterodimer that is an intermediate in the assembly of the native α2β2 heterotetrameric enzyme, indicating association between subunits after import and processing.
Abstract: Sequence comparisons were used to identify cDNAs potentially encoding the α- and β-subunits of chloroplast pyruvate dehydrogenase. Coupled in-vitro transcription plus translation was used to synthesize radiolabeled pyruvate dehydrogenase α- and β-subunit precursor proteins. When the precursors were incubated with intact pea (Pisum sativum L.) seedling chloroplasts in the presence of ATP, they were imported and proteolytically processed. In contrast, there was no import or processing of the precursors by isolated, intact pea seedling mitochondria. Monospecific antibodies to the recombinant pyruvate dehydrogenase α-subunit were additionally able to co-precipitate radiolabeled pyruvate dehydrogenase β-subunit, indicating association between subunits after import and processing. Furthermore, size-exclusion chromatography was used to identify an αβ heterodimer that is an intermediate in the assembly of the native α2β2 heterotetrameric enzyme.

Journal ArticleDOI
TL;DR: A further series of mutant am alleles, encoding potentially active NADP-specific glutamate dehydrogenase (GDH) and capable of complementation in heterocaryons, have been characterized with respect to both GDH properties and DNA sequence changes.
Abstract: A further series of mutant am alleles, encoding potentially active NADP-specific glutamate dehydrogenase (GDH) and capable of complementation in heterocaryons, have been characterized with respect to both GDH properties and DNA sequence changes. Several mutants previously studied, and some of their same-site or second-site revertants, have also been sequenced for the first time. We present a summary of what is known of the properties of all am mutants that have been defined at the sequence level.


Journal ArticleDOI
TL;DR: People with MCAD deficiency are at risk of serious complications such as seizures, breathing difficulties, liver problems, brain damage, coma, and sudden death.