scispace - formally typeset
Search or ask a question

Showing papers in "FEBS Journal in 2000"


Journal ArticleDOI
TL;DR: The identity of Alamar Blue is shown as resazurin, a very simple and versatile way of measuring cell proliferation and cytotoxicity that presents numerous advantages over other cytot toxicity or proliferation tests but there are several drawbacks to the routine use.
Abstract: We show here the identity of Alamar Blue as resazurin. The 'resazurin reduction test' has been used for about 50 years to monitor bacterial and yeast contamination of milk, and also for assessing semen quality. Resazurin (blue and nonfluorescent) is reduced to resorufin (pink and highly fluorescent) which is further reduced to hydroresorufin (uncoloured and nonfluorescent). It is still not known how this reduction occurs, intracellularly via enzyme activity or in the medium as a chemical reaction, although the reduced fluorescent form of Alamar Blue was found in the cytoplasm and of living cells nucleus of dead cells. Recently, the dye has gained popularity as a very simple and versatile way of measuring cell proliferation and cytotoxicity. This dye presents numerous advantages over other cytotoxicity or proliferation tests but we observed several drawbacks to the routine use of Alamar Blue. Tests with several toxicants in different cell lines and rat primary hepatocytes have shown accumulation of the fluorescent product of Alamar Blue in the medium which could lead to an overestimation of cell population. Also, the extensive reduction of Alamar Blue by metabolically active cells led to a final nonfluorescent product, and hence an underestimation of cellular activity.

3,097 citations


Journal ArticleDOI
TL;DR: All mammalian thioredoxin reduct enzyme isozymes are homologous to glutathione reductase and contain a conserved C-terminal elongation with a cysteine-selenocysteine sequence forming a redox-active selenenylsulfide/selenolthiol active site and are inhibited by goldthioglucose and other clinically used drugs.
Abstract: Thioredoxin, thioredoxin reductase and NADPH, the thioredoxin system, is ubiquitous from Archea to man. Thioredoxins, with a dithiol/disulfide active site (CGPC) are the major cellular protein disulfide reductases; they therefore also serve as electron donors for enzymes such as ribonucleotide reductases, thioredoxin peroxidases (peroxiredoxins) and methionine sulfoxide reductases. Glutaredoxins catalyze glutathione-disulfide oxidoreductions overlapping the functions of thioredoxins and using electrons from NADPH via glutathione reductase. Thioredoxin isoforms are present in most organisms and mitochondria have a separate thioredoxin system. Plants have chloroplast thioredoxins, which via ferredoxin-thioredoxin reductase regulates photosynthetic enzymes by light. Thioredoxins are critical for redox regulation of protein function and signaling via thiol redox control. A growing number of transcription factors including NF-kappaB or the Ref-1-dependent AP1 require thioredoxin reduction for DNA binding. The cytosolic mammalian thioredoxin, lack of which is embryonically lethal, has numerous functions in defense against oxidative stress, control of growth and apoptosis, but is also secreted and has co-cytokine and chemokine activities. Thioredoxin reductase is a specific dimeric 70-kDa flavoprotein in bacteria, fungi and plants with a redox active site disulfide/dithiol. In contrast, thioredoxin reductases of higher eukaryotes are larger (112-130 kDa), selenium-dependent dimeric flavoproteins with a broad substrate specificity that also reduce nondisulfide substrates such as hydroperoxides, vitamin C or selenite. All mammalian thioredoxin reductase isozymes are homologous to glutathione reductase and contain a conserved C-terminal elongation with a cysteine-selenocysteine sequence forming a redox-active selenenylsulfide/selenolthiol active site and are inhibited by goldthioglucose (aurothioglucose) and other clinically used drugs.

2,383 citations


Journal ArticleDOI
TL;DR: The evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders is reviewed.
Abstract: There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Friedreich’s ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson’s disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood‐brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.

1,188 citations


Journal ArticleDOI
TL;DR: A review of recent work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress and the molecular mechanisms of protein regulation by oxidative andNitrosative thiol-group modifications are outlined.
Abstract: Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.

749 citations


Journal ArticleDOI
TL;DR: The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture, which show that these two types of cell prefer different extracellular precursors for glutATHione.
Abstract: The cells of the adult human brain consume approximately 20% of the oxygen utilized by the body although the brain comprises only 2% of the body weight. Reactive oxygen species, which are produced continuously during oxidative metabolism, are generated at high rates within the brain. Therefore, the defense against the toxic effects of reactive oxygen species is an essential task within the brain. An important component of the cellular detoxification of reactive oxygen species is the antioxidant glutathione. The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture. These two types of cell prefer different extracellular precursors for glutathione. Glutathione is involved in the disposal of exogenous peroxides by astrocytes and neurons. In coculture astrocytes protect neurons against the toxicity of reactive oxygen species. One mechanism of this interaction is the supply by astrocytes of glutathione precursors to neurons.

698 citations


Journal ArticleDOI
TL;DR: The in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes in nongrowing, anaerobic, compressed Saccharomyces cerevisiae.
Abstract: This paper examines whether the in vivo behavior of yeast glycolysis can be understood in terms of the in vitro kinetic properties of the constituent enzymes. In nongrowing, anaerobic, compressed Saccharomyces cerevisiae the values of the kinetic parameters of most glycolytic enzymes were determined. For the other enzymes appropriate literature values were collected. By inserting these values into a kinetic model for glycolysis, fluxes and metabolites were calculated. Under the same conditions fluxes and metabolite levels were measured. In our first model, branch reactions were ignored. This model failed to reach the stable steady state that was observed in the experimental flux measurements. Introduction of branches towards trehalose, glycogen, glycerol and succinate did allow such a steady state. The predictions of this branched model were compared with the empirical behavior. Half of the enzymes matched their predicted flux in vivo within a factor of 2. For the other enzymes it was calculated what deviation between in vivo and in vitro kinetic characteristics could explain the discrepancy between in vitro rate and in vivo flux.

692 citations


Journal ArticleDOI
TL;DR: It is demonstrated that a negative feedback loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about sustained oscillations in MAPK phosphorylation, which can range from minutes to hours.
Abstract: Functional organization of signal transduction into protein phosphorylation cascades, such as the mitogen-activated protein kinase (MAPK) cascades, greatly enhances the sensitivity of cellular targets to external stimuli The sensitivity increases multiplicatively with the number of cascade levels, so that a tiny change in a stimulus results in a large change in the response, the phenomenon referred to as ultrasensitivity In a variety of cell types, the MAPK cascades are imbedded in long feedback loops, positive or negative, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level Here we demonstrate that a negative feedback loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about sustained oscillations in MAPK phosphorylation Based on recent kinetic data on the MAPK cascades, we predict that the period of oscillations can range from minutes to hours The phosphorylation level can vary between the base level and almost 100% of the total protein The oscillations of the phosphorylation cascades and slow protein diffusion in the cytoplasm can lead to intracellular waves of phospho-proteins

686 citations


Journal ArticleDOI
TL;DR: Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs,Eight of which are conserved in both mouse and human, suggesting a function in androgen metabolism as well as retinoids metabolism.
Abstract: Vitamin A (retinol) and provitamin A (β-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.

597 citations


Journal ArticleDOI
TL;DR: The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli, and the pivotal role played by ribosomal protein S6 kinase (S6K) and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K.
Abstract: The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5’ terminal oligopyrimidine tract (5’TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.

539 citations


Journal ArticleDOI
TL;DR: The latest advances in the understanding of the Smad mechanism of action and their in vivo functions are reviewed, with a focus on the function of Smads as signal integrators.
Abstract: Smads are pivotal intracellular nuclear effectors of transforming growth factor-beta (TGF-beta) family members. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity trigger phosphorylation of receptor-regulated Smads (R-Smads), whereas Smad2 and Smad3 are phosphorylated by TGF-beta, and activin type I receptors, Smad1, Smad5 and Smad8, act downstream of BMP type I receptors. Activated R-Smads form heteromeric complexes with common-partner Smads (Co-Smads), e.g. Smad4, which translocate efficiently to the nucleus, where they regulate, in co-operation with other transcription factors, coactivators and corepressors, the transcription of target genes. Inhibitory Smads act in most cases in an opposite manner from R- and Co-Smads. Like other components in the TGF-beta family signaling cascade, Smad activity is intricately regulated. The multifunctional and context dependency of TGF-beta family responses are reflected in the function of Smads as signal integrators. Certain Smads are somatically mutated at high frequency in particular types of human cancers. Gene ablation of Smads in the mouse has revealed their critical roles during embryonic development. Here we review the latest advances in our understanding of the Smad mechanism of action and their in vivo functions.

535 citations


Journal ArticleDOI
TL;DR: This research readily demonstrates that integral OMPs, commonly missing from 2D gel maps, are amenable to separation by two-dimensional electrophoresis and shown the value of parallel protein analysis to document changes in E. coli OMP expression as influenced by culture temperature.
Abstract: Outer membrane proteins (OMPs) of Gram-negative bacteria are key molecules that interface the cell with the environment. Traditional biochemical and genetic approaches have yielded a wealth of knowledge relating to the function of OMPs. Nonetheless, with the completion of the Escherichia coli genome sequencing project there is the opportunity to further expand our understanding of the organization, expression and function of the OMPs in this Gram-negative bacterium. In this report we describe a proteomic approach which provides a platform for parallel analysis of OMPs. We propose a rapid method for isolation of bacterial OMPs using carbonate incubation, purification and protein array by two-dimensional electrophoresis, followed by protein identification using mass spectrometry. Applying this method to examine E. coli K-12 cells grown in minimal media we identified 21 out of 26 (80%) of the predicted integral OMPs that are annotated in SWISS-PROT release 37 and predicted to separate within the range of pH 4-7 and molecular mass 10-80 kDa. Five outer membrane lipoproteins were also identified and only minor contamination by nonmembrane proteins was observed. Importantly, this research readily demonstrates that integral OMPs, commonly missing from 2D gel maps, are amenable to separation by two-dimensional electrophoresis. Two of the identified OMPs (YbiL, YeaF) were previously known only from their ORFs, and their identification confirms the cognate genes are transcribed and translated. Furthermore, we show that like the E. coli iron receptors FhuE and FhuA, the expression of YbiL is markedly increased by iron limitation, suggesting a putative role for this protein in iron transport. In an additional demonstration we show the value of parallel protein analysis to document changes in E. coli OMP expression as influenced by culture temperature.

Journal ArticleDOI
TL;DR: Alsterpaullone inhibits the phosphorylation of tau in vivo at sites which are typically phosphorylated by GSK-3beta in Alzheimer's disease, and inhibits the CDK5/p25-dependent phosphorylations of DARPP-32 in mouse striatum slices in vitro.
Abstract: Paullones constitute a new family of benzazepinones with promising antitumoral properties. They were recently described as potent, ATP-competitive, inhibitors of the cell cycle regulating cyclin-dependent kinases (CDKs). We here report that paullones also act as very potent inhibitors of glycogen synthase kinase-3b (GSK-3b) (IC50: 4‐80 nm) and the neuronal CDK5/p25 (IC50: 20‐200 nm). These two enzymes are responsible for most of the hyperphosphorylation of the microtubule-binding protein tau, a feature observed in the brains of patients with Alzheimer’s disease and other neurodegenerative ‘taupathies’. Alsterpaullone, the most active paullone, was demonstrated to act by competing with ATP for binding to GSK-3b. Alsterpaullone inhibits the phosphorylation of tau in vivo at sites which are typically phosphorylated by GSK-3b in Alzheimer’s disease. Alsterpaullone also inhibits the CDK5/p25-dependent phosphorylation of DARPP-32 in mouse striatum slices in vitro. This dual specificity of paullones may turn these compounds into very useful tools for the study and possibly treatment of neurodegenerative and proliferative disorders.

Journal ArticleDOI
TL;DR: The hypothesis that TrxR and extracellular thioredoxin play a pathophysiologic role in chronic diseases such as rheumatoid arthritis, Sjögren's syndrom, AIDS, and certain malignancies, is substantiated by biochemical, virological, and clinical evidence.
Abstract: Human cytosolic thioredoxin reductase (TrxR), a homodimeric protein containing 1 selenocysteine and 1 FAD per subunit of 55 kDa, catalyses the NADPH-dependent reduction of thioredoxin disulfide and of numerous other oxidized cell constituents. As a general reducing enzyme with little substrate specificity, it also contributes to redox homeostasis and is involved in prevention, intervention and repair of damage caused by H2O2-based oxidative stress. Being a selenite-reducing enzyme as well as a selenol-containing enzyme, human TrxR plays a central role in selenium (patho)physiology. Both dietary selenium deficiency and selenium oversupplementation, a lifestyle phenomenon of our time, appear to interfere with the activity of TrxR. Selenocysteine 496 of human TrxR is a major target of the anti-rheumatic gold-containing drug auranofin, the formal Ki for the stoichiometric inhibition being 4 nM. The hypothesis that TrxR and extracellular thioredoxin play a pathophysiologic role in chronic diseases such as rheumatoid arthritis, Sjogren's syndrom, AIDS, and certain malignancies, is substantiated by biochemical, virological, and clinical evidence. Reduced thioredoxin acts as an autocrine growth factor in various tumour diseases, as a chemoattractant, and it synergises with interleukins 1 and 2. The effects of anti-tumour drugs such as carmustine and cisplatin can be explained in part by the inhibition of TrxR. Consistently, high levels of the enzyme can support drug resistance. TrxRs from different organisms such as Escherichia coli, Mycobacterium leprae, Plasmodium falciparum, Drosophila melanogaster, and man show a surprising diversity in their chemical mechanism of thioredoxin reduction. This is the basis for attempts to develop specific TrxR inhibitors as drugs against bacterial infections like leprosy and parasitic diseases like amebiasis and malaria.

Journal ArticleDOI
TL;DR: It is hoped that the chemical difference between the two high Mr forms of thioredoxin reductase may be exploited for drug design.
Abstract: Thioredoxin reductase (EC 1.6.4.5) is a widely distributed flavoprotein that catalyzes the NADPH-dependent reduction of thioredoxin. Thioredoxin plays several key roles in maintaining the redox environment of the cell. Like all members of the enzyme family that includes lipoamide dehydrogenase, glutathione reductase and mercuric reductase, thioredoxin reductase contains a redox active disulfide adjacent to the flavin ring. Evolution has produced two forms of thioredoxin reductase, a protein in prokaryotes, archaea and lower eukaryotes having a Mr of 35 000, and a protein in higher eukaryotes having a Mr of 55 000. Reducing equivalents are transferred from the apolar flavin binding site to the protein substrate by distinct mechanisms in the two forms of thioredoxin reductase. In the low Mr enzyme, interconversion between two conformations occurs twice in each catalytic cycle. After reduction of the disulfide by the flavin, the pyridine nucleotide domain must rotate with respect to the flavin domain in order to expose the nascent dithiol for reaction with thioredoxin; this motion repositions the pyridine ring adjacent to the flavin ring. In the high Mr enzyme, a third redox active group shuttles the reducing equivalent from the apolar active site to the protein surface. This group is a second redox active disulfide in thioredoxin reductase from Plasmodium falciparum and a selenenylsulfide in the mammalian enzyme. P. falciparum is the major causative agent of malaria and it is hoped that the chemical difference between the two high Mr forms may be exploited for drug design.

Journal ArticleDOI
TL;DR: A correlation between a cylindrical molecular shape of lipid A and antagonistic activity was established: IL-6 induction by enterobacterial LPS was inhibited by cylindrically shaped lipid A except for compounds with reduced headgroup charge.
Abstract: Lipopolysaccharide (LPS) represents a major virulence factor of Gram-negative bacteria ('endotoxin') that can cause septic shock in mammals including man. The lipid anchor of LPS to the outer membrane, lipid A, has a peculiar chemical structure, harbours the 'endotoxic principle' of LPS and is responsible for the expression of pathophysiological effects. Chemically modified lipid A can be endotoxically inactive, but may express strong antagonistic activity against LPS, a property that can be utilized in antisepsis treatment. We show here that these different biological activities are directly correlated with the molecular shape of lipid A. Only (hexaacyl) lipid A with a conical/concave shape, the cross-section of the hydrophobic region being larger than that of the hydrophilic region, exhibited strong interleukin-6 (IL-6)-inducing capacity. Most strikingly, a correlation between a cylindrical molecular shape of lipid A and antagonistic activity was established: IL-6 induction by enterobacterial LPS was inhibited by cylindrically shaped lipid A except for compounds with reduced headgroup charge. The antagonistic action is interpreted by assuming that lipid A molecules intercalate into the cytoplasmic membrane of mononuclear cells, and subsequently blocking of the putative signaling protein by the lipid A with cylindrical shape.

Journal ArticleDOI
TL;DR: The first group of reactions leads to the synthesis of an unusual cyclic nucleotide, cyclic ADP-ribose (cADPR), which has been reported to be potent intracellular calcium-mobilizing agents and in concert with inositol 1,4,5-trisphosphate, they participate in cytosolic calcium regulation by releasing calcium from intrace cellular stores.
Abstract: Over the past decades, the pyridine nucleotides have been established as important molecules in signaling pathways, besides their well known function in energy transduction. Similarly to another molecule carrying such dual functions, ATP, NAD(P)+ may serve as substrate for covalent protein modification or as precursor of biologically active compounds. Protein modification is catalyzed by ADP-ribosyl transferases that attach the ADP-ribose moiety of NAD+ to specific amino-acid residues of the acceptor proteins. For a number of ADP ribosylation reactions the specific transferases and their target proteins have been identified. As a result of the modification, the biological activity of the acceptor proteins may be severely changed. The cell nucleus contains enzymes catalyzing the transfer of ADP-ribose polymers (polyADP-ribose) onto the acceptor proteins. The best known enzyme of this type is poly(ADP-ribose) polymerase 1 (PARP1), which has been implicated in the regulation of several important processes including DNA repair, transcription, apoptosis, neoplastic transformation and others. The second group of reactions leads to the synthesis of an unusual cyclic nucleotide, cyclic ADP-ribose (cADPR). Moreover, the enzymes catalyzing this reaction may also replace the nicotinamide of NADP+ by nicotinic acid resulting in the synthesis of nicotinic acid adenine dinucleotide phosphate (NAADP+). Both cADPR and NAADP+ have been reported to be potent intracellular calcium-mobilizing agents. In concert with inositol 1,4,5-trisphosphate, they participate in cytosolic calcium regulation by releasing calcium from intracellular stores.

Journal ArticleDOI
TL;DR: It was found that after increasing the concentration of soluble silicate in the seawater medium from around 1 microM to approximately 60 microM, this gene is strongly upregulated and the expression of collagen is also upregulated in those primmorphs which were treated with recombinant myotrophin obtained from the same sponge.
Abstract: The major skeletal elements in the (Porifera) sponges, are spicules formed from inorganic material The spicules in the Demospongiae class are composed of hydrated, amorphous silica Recently an enzyme, silicatein, which polymerizes alkoxide substrates to silica was described from the sponge Tethya aurantia In the present study the cDNA encoding silicatein was isolated from the sponge Suberites domuncula The deduced polypeptide comprises 331 amino acids and has a calculated size of Mr 36 306 This cDNA was used as a probe to study the potential role of silicate on the expression of the silicatein gene For these studies, primmorphs, a special form of aggregates composed of proliferating cells, have been used It was found that after increasing the concentration of soluble silicate in the seawater medium from around 1 µm to approximately 60 µm, this gene is strongly upregulated Without additional silicate only a very weak expression could be measured Because silica as well as collagen are required for the formation of spicules, the expression of the gene encoding collagen was measured in parallel It was also found that the level of transcripts for collagen strongly increases in the presence of 60 µm soluble silicate In addition, it is demonstrated that the expression of collagen is also upregulated in those primmorphs which were treated with recombinant myotrophin obtained from the same sponge Myotrophin, however, had no effect on the expression of silicatein From these data we conclude that silicate influences the expression of the enzyme silicatein and also the expression of collagen, (via the mediator myotrophin)

Journal ArticleDOI
TL;DR: Light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacyl glycerol acyltransferase-transformed plants.
Abstract: During the course of a search for cDNAs encoding plant sterol acyltransferases, an expressed sequence tag clone presenting substantial identity with yeast and animal acyl CoA:cholesterol acyltransferases was used to screen cDNA libraries from Arabidopsis and tobacco. This resulted in the isolation of two full-length cDNAs encoding proteins of 520 and 532 amino acids, respectively. Attempts to complement the yeast double-mutant are1 are2 defective in acyl CoA:cholesterol acyltransferase were unsuccessful, showing that neither gene encodes acyl CoA:cholesterol acyltransferase. Their deduced amino acid sequences were then shown to have 40 and 38% identity, respectively, with a murine acyl CoA:diacylglycerol acyltransferase and their expression in are1 are2 or wild-type yeast resulted in a strong increase in the incorporation of oleyl CoA into triacylglycerols. Incorporation was 2-3 times higher in microsomes from yeast transformed with these plant cDNAs than in yeast transformed with the void vector, clearly showing that these cDNAs encode acyl CoA:diacylglycerol acyltransferases. Moreover, during the preparation of microsomes from the Arabidopsis DGAT-transformed yeast, a floating layer was observed on top of the 100 000 g supernatant. This fraction was enriched in triacylglycerols and exhibited strong acyl CoA:diacylglycerol acyltransferase activity, whereas almost no activity was detected in the corresponding clear fraction from the control yeast. Thanks to the use of this active fraction and dihexanoylglycerol as a substrate, the de novo synthesis of 1,2-dihexanoyl 3-oleyl glycerol by AtDGAT could be demonstrated. Transformation of tobacco with AtDGAT was also performed. Analysis of 19 primary transformants allowed detection, in several individuals, of a marked increase (up to seven times) of triacylglycerol content which correlated with the AtDGAT mRNA expression. Furthermore, light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacylglycerol acyltransferase-transformed plants.

Journal ArticleDOI
TL;DR: The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.
Abstract: Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves beta-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in beta-casein turnover when the assay temperature is raised from 37 to 45 degrees C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.

Journal ArticleDOI
TL;DR: DPP8, a novel human postproline dipeptidyl aminopeptidase that is homologous to DPPIV and FAP is described and a potential role for DPP8 in T-cell activation and immune function is suggested.
Abstract: Dipeptidyl peptidase (DPP) IV has roles in T-cell costimulation, chemokine biology, type-II diabetes and tumor biology. Fibroblast activation protein (FAP) has been implicated in tumor growth and cirrhosis. Here we describe DPP8, a novel human postproline dipeptidyl aminopeptidase that is homologous to DPPIV and FAP. Northern-blot hybridization showed that the tissue expression of DPP8 mRNA is ubiquitous, similar to that of DPPIV. The DPP8 gene was localized to chromosome 15q22, distinct from a closely related gene at 19p13.3 which we named DPP9. The full-length DPP8 cDNA codes for an 882-amino-acid protein that has about 27% identity and 51% similarity to DPPIV and FAP, but no transmembrane domain and no N-linked or O-linked glycosylation. Western blots and confocal microscopy of transfected COS-7 cells showed DPP8 to be a 100-kDa monomeric protein expressed in the cytoplasm. Purified recombinant DPP8 hydrolyzed the DPPIV substrates Ala-Pro, Arg-Pro and Gly-Pro. Thus recombinant DPP8 shares a postproline dipeptidyl aminopeptidase activity with DPPIV and FAP. DPP8 enzyme activity had a neutral pH optimum consistent with it being nonlysosomal. The similarities between DPP8 and DPPIV in tissue expression pattern and substrates suggests a potential role for DPP8 in T-cell activation and immune function.

Journal ArticleDOI
TL;DR: It is shown here that 95% of the serum dipeptidyl peptidase activity is associated with a protein with ADA-binding properties, and the purified serum enzyme was confirmed as CD26.
Abstract: Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) is a serine type protease with an important modulatory activity on a number of chemokines, neuropeptides and peptide hormones. It is also known as CD26 or adenosine deaminase (ADA; EC 3.5.4.4) binding protein. DPPIV has been demonstrated on the plasmamembranes of T cells and activated natural killer or B cells as well as on a number of endothelial and differentiated epithelial cells. A soluble form of CD26/DPPIV has been described in serum. Over the past few years, several related enzymes with similar dipeptidyl peptidase activity have been discovered, raising questions on the molecular origin(s) of serum dipeptidyl peptidase activity. Among them attractin, the human orthologue of the mouse mahogany protein, was postulated to be responsible for the majority of the DPPIV-like activity in serum. Using ADA-affinity chromatography, it is shown here that 95% of the serum dipeptidyl peptidase activity is associated with a protein with ADA-binding properties. The natural protein was purified in milligram quantities, allowing molecular characterization (N-terminal sequence, glycosylation type, CD-spectrum, pH and thermal stability) and comparison with CD26/DPPIV from other sources. The purified serum enzyme was confirmed as CD26.

Journal ArticleDOI
TL;DR: Prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture caused a 50-70% increase in enzyme activity and also increased the affinity of cGMP binding to the allosteric cG MP-binding sites.
Abstract: In addition to its cGMP-selective catalytic site, cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains two allosteric cGMP-binding sites and at least one phosphorylation site (Ser92) on each subunit [Thomas, M.K., Francis, S.H. & Corbin, J.D. (1990) J. Biol. Chem. 265, 14971-14978]. In the present study, prior incubation of recombinant bovine PDE5 with a phosphorylation reaction mixture [cGMP-dependent protein kinase (PKG) or catalytic subunit of cAMP-dependent protein kinase (PKA), MgATP, cGMP, 3-isobutyl-1-methylxanthine], shown earlier to produce Ser92 phosphorylation, caused a 50-70% increase in enzyme activity and also increased the affinity of cGMP binding to the allosteric cGMP-binding sites. Both effects were associated with increases in its phosphate content up to 0.6 mol per PDE5 subunit. Omission of any one of the preincubation components caused loss of stimulation of catalytic activity. Addition of the phosphorylation reaction mixture to a crude bovine lung extract, which contains PDE5, also produced a significant increase in cGMP PDE catalytic activity. The increase in recombinant PDE5 catalytic activity brought about by phosphorylation was time-dependent and was obtained with 0.2-0.5 microM PKG subunit, which is approximately the cellular level of this enzyme in vascular smooth muscle. Significantly greater stimulation was observed using cGMP substrate concentrations below the Km value for PDE5, although stimulation was also seen at high cGMP concentrations. Considerably higher concentration of the catalytic subunit of PKA than of PKG was required for activation. There was no detectable difference between phosphorylated and unphosphorylated PDE5 in median inhibitory concentration for the PDE5 inhibitors, sildenafil, or zaprinast 3-isobutyl-1-methylxanthine. Phosphorylation reduced the cGMP concentration required for half-maximum binding to the allosteric cGMP-binding sites from 0.13 to 0.03 microM. The mechanism by which phosphorylation of PDE5 by PKG could be involved in physiological negative-feedback regulation of cGMP levels is discussed.

Journal ArticleDOI
TL;DR: Seventeen aurein peptides are present in the secretion from the granular dorsal glands of the Green and Golden Bell Frog Litoria aurea, and 16 from the corresponding secretion of the related Southern Bellfrog L. raniformis: thirteen of these peptides show wide-spectrum antibiotic and anticancer activity.
Abstract: Seventeen aurein peptides are present in the secretion from the granular dorsal glands of the Green and Golden Bell Frog Litoria aurea, and 16 from the corresponding secretion of the related Southern Bell Frog L. raniformis. Ten of these peptides are common to both species. Thirteen of the aurein peptides show wide-spectrum antibiotic and anticancer activity. These peptides are named in three groups (aureins 1-3) according to their sequences. Amongst the more active peptides are aurein 1.2 (GLFDIIKKIAESF-NH2), aurein 2.2 (GLFDIVKKVVGALGSL-NH2) and aurein 3.1 (GLFDIVKKIAGHIAGSI-NH2). Both L. aurea and L. raniformis have endoproteases that deactivate the major membrane-active aurein peptides by removing residues from both the N- and C-termini of the peptides. The most abundant degradation products have two residues missing from the N-terminal end of the peptide. The solution structure of the basic peptide, aurein 1.2, has been determined by NMR spectroscopy to be an amphipathic alpha-helix with well-defined hydrophilic and hydrophobic regions. Certain of the aurein peptides (e.g. aureins 1.2 and 3.1) show anticancer activity in the NCI test regime, with LC50 values in the 10-5-10-4 M range. The aurein 1 peptides have only 13 amino-acid residues: these are the smallest antibiotic and anticancer active peptides yet reported from an anuran. The longer aurein 4 and 5 peptides, e.g. aurein 4.1 (GLIQTIKEKLKELAGGLVTGIQS-OH) and aurein 5. 1 (GLLDIVTGLLGNLIVDVLKPKTPAS-OH) show neither antibacterial nor anticancer activity.

Journal ArticleDOI
TL;DR: The nature of the signals elicited by the respective death inducers determines whether NF-kappaB induction leads to apoptosis or survival, suggesting that the manipulation of NF- kappaB activity may provide a new approach to adjuvant therapy in cancer treatment.
Abstract: To test whether the behaviour of transcription factor NF-kappaB as a promoter or antagonist of apoptosis depends on the apoptotic stimulus, we determined the influence of NF-kappaB on cell killing elicited by a variety of inducers within a given cell type. Inhibition of NF-kappaB by genetic and pharmacological approaches rendered HeLa cells more susceptible to TNF-alpha-induced cell killing, but protected them almost completely from H2O2- and pervanadate-induced apoptosis. TNF-alpha was unable to protect HeLa from H2O2- and pervanadate-induced apoptosis and further enhanced the cytotoxicity induced by these two adverse agents. Supernatants from HeLa cells stably overexpressing a transdominant negative form of IkappaB-alpha selectively increased the cytotoxicity of TNF-alpha for HeLa cells, suggesting that the enhanced susceptibility of these cells can be attributed to one or more secretable factors. Supershift experiments showed that the various apoptotic stimuli induced the same subset of DNA-binding subunits. Therefore, the nature of the signals elicited by the respective death inducers determines whether NF-kappaB induction leads to apoptosis or survival, suggesting that the manipulation of NF-kappaB activity may provide a new approach to adjuvant therapy in cancer treatment.

Journal ArticleDOI
TL;DR: The results suggest that more potent inhibitors act as more effective specific chemical chaperones for the mutant enzyme, and the potent competitive inhibitors of alpha-Gal A are effective specificchemical chaperone for Fabry disease.
Abstract: Fabry disease is a lysosomal storage disorder caused by deficient lysosomal α-galactosidase A (α-Gal A) activity. Deficiency of the enzyme activity results in progressive deposition of neutral glycosphingolipids with terminal α-galactosyl residue in vascular endothelial cells. We recently proposed a chemical chaperone therapy for this disease by administration of 1-deoxygalactonojirimycin, a potent inhibitor of the enzyme, at subinhibitory intracellular concentrations [Fan, J.-Q., Ishii, S., Asano, N. and Suzuki, Y. (1999) Nat. Med.5, 112–115]. 1-Deoxygalactonojirimycin served as a specific chaperone for those mutant enzymes that failed to maintain their proper conformation to avoid excessive degradation. In order to establish a correlation between in vitro inhibitory activity and intracellular enhancement activity of the specific chemical chaperone, a series of 1-deoxygalactonojirimycin derivatives were tested for activity with both α-Gal A and Fabry lymphoblasts. 1-Deoxygalactonojirimycin was the most potent inhibitor of α-Gal A with an IC50 value of 0.04 µm. α-Galacto-homonojirimycin, α-allo-homonojirimycin and β-1-C-butyl-deoxygalactonojirimycin were effective inhibitors with IC50 values of 0.21, 4.3 and 16 µm, respectively. N-Alkylation, deoxygenation at C-2 and epimerization at C-3 of 1-deoxygalactonojirimycin markedly lowered or abolished its inhibition toward α-Gal A. Inclusion of 1-deoxygalactonojirimycin, α-galacto-homonojirimycin, α-allo-homonojirimycin and β-1-C-butyl-deoxygalactonojirimycin at 100 µm in culture medium of Fabry lymphoblasts increased the intracellular α-Gal A activity by 14-fold, 5.2-fold, 2.4-fold and 2.3-fold, respectively. Weaker inhibitors showed only a minimum enhancement effect. These results suggest that more potent inhibitors act as more effective specific chemical chaperones for the mutant enzyme, and the potent competitive inhibitors of α-Gal A are effective specific chemical chaperones for Fabry disease.

Journal ArticleDOI
TL;DR: The colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of human atheroma, fibroatheroma (type V) and complicated (type VI) lesions provides further convincing evidence for MPO/H2O2/halide system-mediated oxidation of (lipo)proteins under in vivo conditions.
Abstract: The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although the precise mechanisms of in vivo oxidation are widely unknown, increasing evidence suggests that myeloperoxidase (MPO, EC 1.11.1.7), a protein secreted by activated phagocytes, generates modified/oxidized (lipo)proteins via intermediate formation of hypochlorous acid (HOCl). In vitro generation of HOCl transforms lipoproteins into high uptake forms for macrophages giving rise to cholesterol-engorged foam cells. To identify HOCl-modified-epitopes in human plaque tissues we have raised monoclonal antibodies (directed against human HOCl-modified LDL) that do not cross-react with other LDL modifications, i.e. peroxynitrite-LDL, hemin-LDL, Cu2+-oxidized LDL, 4-hydroxynonenal-LDL, malondialdehyde-LDL, glycated-LDL, and acetylated-LDL. The antibodies recognized a specific epitope present on various proteins after treatment with OCl- added as reagent or generated by the MPO/H2O2/halide system. Immunohistochemical studies revealed pronounced staining for HOCl-modified-epitopes in fibroatheroma (type V) and complicated (type VI) lesions, while no staining was observed in aortae of lesion-prone location (type I). HOCl-oxidation-specific epitopes are detected in cells in the majority of atherosclerotic plaques but not in control segments. Staining was shown to be inside and outside monocytes/macrophages, endothelial cells, as well as in the extracellular matrix. A similar staining pattern using immunohistochemistry could be obtained for MPO. The colocalization of immunoreactive MPO and HOCl-modified-epitopes in serial sections of human atheroma (type IV), fibroatheroma (type V) and complicated (type VI) lesions provides further convincing evidence for MPO/H2O2/halide system-mediated oxidation of (lipo)proteins under in vivo conditions. We propose that MPO could act as an important link between the development of atherosclerotic plaque in the artery wall and chronic inflammatory events.

Journal ArticleDOI
TL;DR: The main objective of this review is to assess the current understanding of the G-protein modulation of GIRK channels and their physiological importance in mammals.
Abstract: G-protein regulated inward-rectifier potassium channels (GIRK) are part of a superfamily of inward-rectifier K+ channels which includes seven family members. To date four GIRK subunits, designated GIRK1-4 (also designated Kir3.1-4), have been identified in mammals, and GIRK5 has been found in Xenopus oocytes. GIRK channels exist in vivo both as homotetramers and heterotetramers. In contrast to the other mammalian GIRK family members, GIRK1 can not form functional channels by itself and has to assemble with GIRK2, 3 or 4. As the name implies, GIRK channels are modulated by G-proteins; they are also modulated by phosphatidylinositol 4,5-bisphosphate, intracellular sodium, ethanol and mechanical stretch. Recently a family of GTPase activating proteins known as regulators of G-protein signaling were shown to be the missing link for the fast deactivation kinetics of GIRK channels in native cells, which contrast with the slow kinetics observed in heterologously expressed channels. GIRK1, 2 and 3 are highly abundant in brain, while GIRK4 has limited distribution. Here, GIRK1/2 seems to be the predominant heterotetramer. In general, neuronal GIRK channels are involved in the regulation of the excitability of neurons and may contribute to the resting potential. Interestingly, only the GIRK1 and 4 subunits are distributed in the atrial and sinoatrial node cells of the heart and are involved in the regulation of cardiac rate. Our main objective of this review is to assess the current understanding of the G-protein modulation of GIRK channels and their physiological importance in mammals.

Journal ArticleDOI
TL;DR: Study with knockout and transgenic mice show that gain of inhibitory function of phospholamban alters cardiac contractility and could be a causal feature in some cardiomyopathies, in which abnormalities in Ca2+ regulatory proteins can lead to disease, rather than apoptosis.
Abstract: Transient elevations of intracellular Ca2+ play a signalling role in such complex cellular functions as contraction, secretion, fertilization, proliferation, metabolism, heartbeat and memory. However, prolonged elevation of Ca2+ above about 10 µm is deleterious to a cell and can activate apoptosis. In muscle, there is a narrow window of Ca2+ dysregulation in which abnormalities in Ca2+ regulatory proteins can lead to disease, rather than apoptosis. Key proteins in the regulation of muscle Ca2+ are the voltage-dependent, dihydropyridine-sensitive, l-type Ca2+ channels located in the transverse tubule and Ca2+ release channels in the junctional terminal cisternae of the sarcoplasmic reticulum. Abnormalities in these proteins play a key role in malignant hyperthermia (MH), a toxic response to anesthetics, and in central core disease (CCD), a muscle myopathy. Sarco(endo)plasmic reticulum Ca2+ ATPases (SERCAs) return sarcoplasmic Ca2+ to the lumen of the sarcoplasmic reticulum. Loss of SERCA1a Ca2+ pump function is one cause of exercise-induced impairment of the relaxation of skeletal muscle, in Brody disease. Phospholamban expressed in cardiac muscle and sarcolipin expressed in skeletal muscle regulate SERCA activity. Studies with knockout and transgenic mice show that gain of inhibitory function of phospholamban alters cardiac contractility and could be a causal feature in some cardiomyopathies. Calsequestrin, calreticulin, and a series of other acidic, lumenal, Ca2+ binding proteins provide a buffer for Ca2+ stored in the sarcoplasmic reticulum. Overexpression of cardiac calsequestrin leads to cardiomyopathy and ablation of calreticulin alters cardiac development.

Journal ArticleDOI
TL;DR: It appears that PGES and cyclooxygenase-2 are functionally coupled in A549 cells and that a required coordinate expression of these enzymes allows for efficient biosynthesis of prostaglandin E2.
Abstract: Recently, a microsomal protein with 38% sequence identity to microsomal glutathione S-transferase 1 was shown to constitute an inducible, glutathione-dependent prostaglandin E synthase (PGES). To investigate the relationship between cyclooxygenase and PGES, a time-course study on protein expression was performed in A549 cells after treatment with interleukin-1β. The result demonstrated a tandem expression of cyclooxygenase-2 and PGES. The observed induction of PGES protein correlated with microsomal PGES activity. No comparable PGES activity was observed in the absence of glutathione or in the cytosolic fraction. In addition, tumour necrosis factor-α was found to induce PGES in these cells. Dexamethasone was found to completely suppress the effect of both cytokines on PGES induction. We also describe a quantitative method, based on RP-HPLC with UV detection for the measurements of PGES activity. This method was used to screen potential PGES inhibitors. Several nonsteroidal anti-inflammatory drugs, stable prostaglandin H2 analogues and cysteinyl leukotrienes were screened for inhibition of PGES activity. NS-398, sulindac sulfide and leukotriene C4 were all found to inhibit PGES activity with IC50 values of 20 µm, 80 µm and 5 µm, respectively. In conclusion, it appears that PGES and cyclooxygenase-2 are functionally coupled in A549 cells and that a required coordinate expression of these enzymes allows for efficient biosynthesis of prostaglandin E2.

Journal ArticleDOI
TL;DR: Together, gene ablation within the TGF-beta signalling pathway supports the notion of a prominent role of T GF-beta during development.
Abstract: Transforming growth factors-beta (TGF-beta) are multifunctional molecules with profound biological effects in many developmental processes including regulation of cell proliferation, differentiation, cell adhesion, skeletal development, haematopoiesis, inflammatory responses, and wound healing. To learn about the role of TGF-beta in vivo, phenotypes of targeted mutations of molecules within the TGF-beta signalling pathway, TGF-beta1, -beta2, -beta3, TGF-beta receptor (TbetaR-II) and the signalling molecules SMAD2, SMAD3 and SMAD4, are discussed in this review. The three individual TGF-beta mutants show distinct and only partially overlapping phenotypes. In mice, targeted disruption of the TGF-beta1 gene results in diffuse and lethal inflammation about 3 weeks after birth, suggesting a prominent role of TGF-beta in the regulation of immune cell proliferation and extravasation into tissues. However, just half of the TGF-beta1 (-/-) conceptuses actually reach partuition due to defective haematopoiesis and endothelial differentiation. Targeted disruption of both TGF-beta2 and TGF-beta3 genes results in perinatal lethality. TGF-beta2 null mice exhibit a broad range of developmental defects, including cardiac, lung, craniofacial, limb, eye, ear and urogenital defects, whereas TGF-beta3 gene ablation results exclusively in defective palatogenesis and delayed pulmonary development. The TbetaR-II null phenotype closely resembles that of TGF-beta1 (-/-) conceptuses, which die in utero by E10.5. Loss of SMAD2 or SMAD4 results in related phenotypes: the mutants fail to form an organized egg cylinder, lack mesoderm required for gastrulation and die prior to E8.5. Together, gene ablation within the TGF-beta signalling pathway supports the notion of a prominent role of TGF-beta during development.