scispace - formally typeset
Search or ask a question

Showing papers on "Urea cycle published in 2022"


BookDOI
TL;DR: Mass newborn screening was started in October 1977 throughout Japan in order to detect five inborn errors of metabolism including phenylketonuria, maple syrup urine disease, homocystinuria, histidinemia, and galactosemia.
Abstract: In the 1970's, the government began to take steps for the treatment of congenital diseases. Mass newborn screening was started in October 1977 throughout Japan in order to detect five inborn errors of metabolism including phenylketonuria, maple syrup urine disease, homocystinuria, histidinemia, and galactosemia. In 1979, mass screening for congenital hypothyroidism was added to the original program. In 1989, screening for congenital adrenal hyperplasia was added and in 1992, screening of histidinemia was discontinued. Currently, screening covers six diseases. The government paid half the cost of screening tests initially and in 2001 this was raised to the full cost (approximately 3000 yen). Parents pay for sample collection. The program is carried out according to law. A new activity involving screening for Wilson disease now necessitates taking dried blood specimens from children 1-3 years old.

20 citations


Journal ArticleDOI
TL;DR: In this article , Gene silencing of astrocytic ornithine decarboxylase-1 (ODC1) was proposed as a promising therapeutic strategy for Alzheimer's disease to facilitate removal of toxic molecules and prevent memory loss.

17 citations


Journal ArticleDOI
TL;DR: In this article , a method that combines deep latent variable modeling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both thermally stable and more catalytically active is presented.
Abstract: Enhancing the potency of mRNA therapeutics is an important objective for treating rare diseases, since it may enable lower and less-frequent dosing. Enzyme engineering can increase potency of mRNA therapeutics by improving the expression, half-life, and catalytic efficiency of the mRNA-encoded enzymes. However, sequence space is incomprehensibly vast, and methods to map sequence to function (computationally or experimentally) are inaccurate or time-/labor-intensive. Here, we present a novel, broadly applicable engineering method that combines deep latent variable modelling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both more thermally stable and more catalytically active. We apply this approach to improve the potency of ornithine transcarbamylase (OTC), a urea cycle enzyme for which loss of catalytic activity causes a rare but serious metabolic disease.

16 citations


Journal ArticleDOI
TL;DR: In this paper , a method that combines deep latent variable modeling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both thermally stable and more catalytically active is presented.
Abstract: Enhancing the potency of mRNA therapeutics is an important objective for treating rare diseases, since it may enable lower and less-frequent dosing. Enzyme engineering can increase potency of mRNA therapeutics by improving the expression, half-life, and catalytic efficiency of the mRNA-encoded enzymes. However, sequence space is incomprehensibly vast, and methods to map sequence to function (computationally or experimentally) are inaccurate or time-/labor-intensive. Here, we present a novel, broadly applicable engineering method that combines deep latent variable modelling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both more thermally stable and more catalytically active. We apply this approach to improve the potency of ornithine transcarbamylase (OTC), a urea cycle enzyme for which loss of catalytic activity causes a rare but serious metabolic disease.

12 citations


Journal ArticleDOI
TL;DR: In this paper , the main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity, and they found that a-allele from a variant on CPS1 may protect from fibrosis development.
Abstract: The main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity. Seventeen liver specimens from NAFLD patients were included for immunohistochemistry and gene expression analyses. Three-hundred-and-eighty-two biopsy-proven NAFLD patients were genotyped for rs1047891, a functional variant located in carbamoyl phosphate synthetase-1 (CPS1) gene. Two preclinical models were employed to analyse CPS1 by immunohistochemistry, a choline deficient high-fat diet model (CDA-HFD) and a high fat diet LDLr knockout model (LDLr -/-). A significant downregulation in mRNA was observed in CPS1 and ornithine transcarbamylase (OTC1) in simple steatosis and NASH-fibrosis patients versus controls. Further, age, obesity (BMI > 30 kg/m2), diabetes mellitus and ALT were found to be risk factors whereas A-allele from CPS1 was a protective factor from liver fibrosis. CPS1 hepatic expression was diminished in parallel with the increase of fibrosis, and its levels reverted up to normality after changing diet in CDA-HFD mice. In conclusion, liver fibrosis and steatosis were associated with a reduction in both gene and protein expression patterns of mitochondrial urea cycle enzymes. A-allele from a variant on CPS1 may protect from fibrosis development. CPS1 expression is restored in a preclinical model when the main trigger of the liver damage disappears.

11 citations


Journal ArticleDOI
TL;DR: In this article , the main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity, and they found that a-allele from a variant on CPS1 may protect from fibrosis development.
Abstract: The main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity. Seventeen liver specimens from NAFLD patients were included for immunohistochemistry and gene expression analyses. Three-hundred-and-eighty-two biopsy-proven NAFLD patients were genotyped for rs1047891, a functional variant located in carbamoyl phosphate synthetase-1 (CPS1) gene. Two preclinical models were employed to analyse CPS1 by immunohistochemistry, a choline deficient high-fat diet model (CDA-HFD) and a high fat diet LDLr knockout model (LDLr -/-). A significant downregulation in mRNA was observed in CPS1 and ornithine transcarbamylase (OTC1) in simple steatosis and NASH-fibrosis patients versus controls. Further, age, obesity (BMI > 30 kg/m2), diabetes mellitus and ALT were found to be risk factors whereas A-allele from CPS1 was a protective factor from liver fibrosis. CPS1 hepatic expression was diminished in parallel with the increase of fibrosis, and its levels reverted up to normality after changing diet in CDA-HFD mice. In conclusion, liver fibrosis and steatosis were associated with a reduction in both gene and protein expression patterns of mitochondrial urea cycle enzymes. A-allele from a variant on CPS1 may protect from fibrosis development. CPS1 expression is restored in a preclinical model when the main trigger of the liver damage disappears.

10 citations


Journal ArticleDOI
TL;DR: In this paper , it was shown that 1-methylnicotinamide-N-methyltransferase (NNMT) is a host factor that mediates metabolic dysfunction in the livers of cancer-bearing mice.
Abstract: Cancers disrupt host homeostasis in various manners but the identity of host factors underlying such disruption remains largely unknown. Here we show that nicotinamide-N-methyltransferase (NNMT) is a host factor that mediates metabolic dysfunction in the livers of cancer-bearing mice. Multiple solid cancers distantly increase expression of Nnmt and its product 1-methylnicotinamide (MNAM) in the liver. Multi-omics analyses reveal suppression of the urea cycle accompanied by accumulation of amino acids, and enhancement of uracil biogenesis in the livers of cancer-bearing mice. Importantly, genetic deletion of Nnmt leads to alleviation of these metabolic abnormalities, and buffers cancer-dependent weight loss and reduction of the voluntary wheel-running activity. Our data also demonstrate that MNAM is capable of affecting urea cycle metabolites in the liver. These results suggest that cancers up-regulate the hepatic NNMT pathway to rewire liver metabolism towards uracil biogenesis rather than nitrogen disposal via the urea cycle, thereby disrupting host homeostasis.

10 citations


Journal ArticleDOI
20 Jan 2022-Cells
TL;DR: In this article , a Drosophila PD model based on inactivation of the DJ-1β gene was used to provide a better understanding of metabolic disturbances underlying PD pathogenesis, and the results showed that the model flies exhibited protein metabolism alterations, a shift from the tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes.
Abstract: Parkinson's disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.

9 citations


Journal ArticleDOI
TL;DR: The results identify CPS1 O-GlcNAcylation as a key nutrient-sensing regulatory step in the urea cycle during aging and dietary restriction, implying a role for mitochondrial O- glucosamine glycosylation in nutritional regulation of longevity.
Abstract: Abstract O-linked N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of intracellular proteins is a dynamic process broadly implicated in age-related disease, yet it remains uncharacterized whether and how O-GlcNAcylation contributes to the natural aging process. O-GlcNAc transferase (OGT) and the opposing enzyme O-GlcNAcase (OGA) control this nutrient-sensing protein modification in cells. Here, we show that global O-GlcNAc levels are increased in multiple tissues of aged mice. In aged liver, carbamoyl phosphate synthetase 1 (CPS1) is among the most heavily O-GlcNAcylated proteins. CPS1 O-GlcNAcylation is reversed by calorie restriction and is sensitive to genetic and pharmacological manipulations of the O-GlcNAc pathway. High glucose stimulates CPS1 O-GlcNAcylation and inhibits CPS1 activity. Liver-specific deletion of OGT potentiates CPS1 activity and renders CPS1 irresponsive to further stimulation by a prolonged fasting. Our results identify CPS1 O-GlcNAcylation as a key nutrient-sensing regulatory step in the urea cycle during aging and dietary restriction, implying a role for mitochondrial O-GlcNAcylation in nutritional regulation of longevity.

9 citations


Journal ArticleDOI
01 Jan 2022
TL;DR: In this article , the full-length cDNAs of the CPS I were cloned from the yellow catfish, and they revealed conserved similarity between the functional domains of the catfish CPS I protein with CPS I proteins of other animals.
Abstract: Fishes can adapt to certain levels of environmental ammonia in water, but the strategies utilized to defend against ammonia toxicity are not exactly the same. The carbamyl phosphate synthase I (CPS I) plays an important role in the regulation of glutamine synthesis and urea cycle, which are the most common strategies for ammonia detoxification. In this study, CPS I was cloned from the yellow catfish. The full-length cDNAs of the CPS I was 5 034 bp, with open reading frames of 4 461 bp. Primary amino acid sequence alignment of CPS I revealed conserved similarity between the functional domains of the yellow catfish CPS I protein with CPS I proteins of other animals. The mRNA expression of CPS I was significantly up-regulated in liver and kidney tissues after acute ammonia stress. The CPS I RNA interference (RNAi) down-regulated the mRNA expressions of CPS I and ornithine transcarbamylase (OTC), but up-regulated glutamine synthetase (GS) and glutamate dehydrogenase (GDH) expressions in primary culture of liver cell after acute ammonia stress. Similarly, the activity of enzymes related to urea cycle decreased significantly, while the activity of enzymes related to glutamine synthesis increased significantly. The results of RNAi in vitro suggested that when the urea cycle is disturbed, the glutamine synthesis will be activated to cope with ammonia toxicity.

8 citations


Journal ArticleDOI
TL;DR: In this article , a review highlights the evolving knowledge about the impact of UCD and hyperammonemia on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery.

Journal ArticleDOI
TL;DR: Four different dysfunctional metabolic mechanisms can be assigned to the kynurenine pathway, the urea cycle, lipid metabolism, and the gut microbiome, which might be relevant for the pathophysiology of SSc.
Abstract: Systemic sclerosis (SSc) is a rare systemic autoimmune disorder marked by high morbidity and increased risk of mortality. Our study aimed to analyze metabolomic profiles of plasma from SSc patients by using targeted and untargeted metabolomics approaches. Furthermore, we aimed to detect biochemical mechanisms relevant to the pathophysiology of SSc. Experiments were performed using high-performance liquid chromatography coupled to mass spectrometry technology. The investigation of plasma samples from SSc patients (n = 52) compared to a control group (n = 48) allowed us to identify four different dysfunctional metabolic mechanisms, which can be assigned to the kynurenine pathway, the urea cycle, lipid metabolism, and the gut microbiome. These significantly altered metabolic pathways are associated with inflammation, vascular damage, fibrosis, and gut dysbiosis and might be relevant for the pathophysiology of SSc. Further studies are needed to explore the role of these metabolomic networks as possible therapeutic targets of SSc.

Journal ArticleDOI
TL;DR: In this paper , the effect and action mechanisms of uric acid (UA)-induced liver injury were investigated and the damaging effect of UA on mouse liver and L02 cells were analyzed.

Journal ArticleDOI
TL;DR: Results indicate that the citrate cycle was maintained at the expense of activities of the energy metabolism, glucuronidation, steroid hormone homeostasis, and urea cycle in the liver of MUN fetuses.
Abstract: This study aimed to understand the mechanisms underlying the effects of maternal undernutrition (MUN) on liver growth and metabolism in Japanese Black fetal calves (8.5 months in utero) using an approach that integrates metabolomics and transcriptomics. Dams were fed 60% (low-nutrition; LN) or 120% (high-nutrition; HN) of their overall nutritional requirements during gestation. We found that MUN markedly decreased the body and liver weights of the fetuses; metabolomic analysis revealed that aspartate, glycerol, alanine, gluconate 6-phosphate, and ophthalmate levels were decreased, whereas UDP-glucose, UDP-glucuronate, octanoate, and 2-hydroxybutyrate levels were decreased in the LN fetal liver (p ≤ 0.05). According to metabolite set enrichment analysis, the highly different metabolites were associated with metabolisms including the arginine and proline metabolism, nucleotide and sugar metabolism, propanoate metabolism, glutamate metabolism, porphyrin metabolism, and urea cycle. Transcriptomic and qPCR analyses revealed that MUN upregulated QRFPR and downregulated genes associated with the glucose homeostasis (G6PC, PCK1, DPP4), ketogenesis (HMGCS2), glucuronidation (UGT1A1, UGT1A6, UGT2A1), lipid metabolism (ANGPTL4, APOA5, FADS2), cholesterol and steroid homeostasis (FDPS, HSD11B1, HSD17B6), and urea cycle (CPS1, ASS1, ASL, ARG2). These metabolic pathways were extracted as relevant terms in subsequent gene ontology/pathway analyses. Collectively, these results indicate that the citrate cycle was maintained at the expense of activities of the energy metabolism, glucuronidation, steroid hormone homeostasis, and urea cycle in the liver of MUN fetuses.

Journal ArticleDOI
TL;DR: In this paper , a review summarises the progress made thus far in generating 2-and 3-dimensional iPSC models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for uCDs.
Abstract: The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.


Journal ArticleDOI
TL;DR: It is concluded that the urea cycle and associated polyamine metabolism function as important protective mechanisms limiting ammonium toxicity in M. truncatula.
Abstract: Abstract The ornithine–urea cycle (urea cycle) makes a significant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine. Arginine decarboxylase activity was decreased in roots, suggesting that the ornithine decarboxylase-dependent production of putrescine was important in situations of ammonium stress. The activity of copper amine oxidase, which releases ammonium from putrescine, was significantly decreased in both shoots and roots. In addition, physiological concentrations of ammonium inhibited copper amine oxidase activity in in vitro assays, supporting the conclusion that high ammonium accumulation favors putrescine synthesis. Moreover, early supplementation of plants with putrescine avoided ammonium toxicity. The levels of transcripts encoding urea-cycle-related proteins were increased and transcripts involved in polyamine catabolism were decreased under high ammonium concentrations. We conclude that the urea cycle and associated polyamine metabolism function as important protective mechanisms limiting ammonium toxicity in M. truncatula. These findings demonstrate the relevance of the urea cycle to polyamine metabolism in higher plants.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized the main clinical features and the pathophysiological mechanisms of stroke and stroke-like episodes in inborn errors of metabolism presenting with stroke as part of natural history of the disease.

Journal ArticleDOI
TL;DR: In this article , a mouse model by administering corticosteroids to OTCspf-ash mice deficient in the OTC gene was analyzed, and the levels of citrulline, arginine, and ornithine did not differ significantly between Otcspfash mice that were administered DEX and normal saline.
Abstract: Ornithine transcarbamylase deficiency (OTCD) is most common among urea cycle disorders (UCDs), defined by defects in enzymes associated with ureagenesis. Corticosteroid administration to UCD patients, including OTCD patients, is suggested to be avoided, as it may induce life-threatening hyperammonemia. The mechanism has been considered nitrogen overload due to the catabolic effect of corticosteroids; however, the pathophysiological process is unclear.To elucidate the mechanism of hyperammonemia induced by corticosteroid administration in OTCD patients, we analyzed a mouse model by administering corticosteroids to OTCspf-ash mice deficient in the OTC gene. Dexamethasone (DEX; 20 mg/kg) was administered to the OTCspf-ash and wild-type (WT) mice at 0 and 24 h, and the serum ammonia concentrations, the levels of the hepatic metabolites, and the gene expressions related with ammonia metabolism in the livers and muscles were analyzed.The ammonia levels in Otcspf-ash mice that were administered DEX tended to increase at 24 h and increased significantly at 48 h. The metabolomic analysis showed that the levels of citrulline, arginine, and ornithine did not differ significantly between Otcspf-ash mice that were administered DEX and normal saline; however, the level of aspartate was increased drastically in Otcspf-ash mice owing to DEX administration (P < 0.01). Among the enzymes associated with the urea cycle, mRNA expressions of carbamoyl-phosphate synthase 1, ornithine transcarbamylase, arginosuccinate synthase 1, and arginosuccinate lyase in the livers were significantly downregulated by DEX administration in both the Otcspf-ash and WT mice (P < 0.01). Among the enzymes associated with catabolism, mRNA expression of Muscle RING-finger protein-1 in the muscles was significantly upregulated in the muscles of WT mice by DEX administration (P < 0.05).We elucidated that corticosteroid administration induced hyperammonemia in Otcspf-ash mice by not only muscle catabolism but also suppressing urea-cycle-related gene expressions. Since the urea cycle intermediate amino acids, such as arginine, might not be effective because of the suppressed expression of urea-cycle-related genes by corticosteroid administration, we should consider an early intervention by renal replacement therapy in cases of UCD patients induced by corticosteroids to avoid brain injuries or fatal outcomes.

Journal ArticleDOI
TL;DR: In this paper , proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in the ornate spiny lobster Panulirus ornatus treated with ammonia (20 mg L-1) for 48 hours.

Journal ArticleDOI
TL;DR: It is indicated that hemodialysis is safe, effective, and life-saving for most neonates with severe IEM-induced metabolic intoxication, when promptly performed by an experienced and multidisciplinary team.

Journal ArticleDOI
TL;DR: The development and challenges of arginase inhibitors in treating DM and its related pathologies are reviewed and the regulatory roles and underlying mechanisms of arkinase in the pathogenesis and progression ofDM and its complications are explored.
Abstract: Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.

Journal ArticleDOI
TL;DR: This was the first ever experimental metabolomic study of wildlife exposed to lead in the field, and enrichment analysis showed alterations in the urea cycle and ATP-binding cassette transporter pathways.
Abstract: Lead poisoning is often considered a traditional disease; however, the specific mechanism of toxicity remains unclear. The study of Pb-induced alterations in cellular metabolic pathways is important to understand the biological response and disorders associated with environmental exposure to lead. Metabolomics studies have recently been paid considerable attention to understand in detail the biological response to lead exposure and the associated toxicity mechanisms. In the present study, wild rodents collected from an area contaminated with lead (N = 18) and a control area (N = 10) were investigated. This was the first ever experimental metabolomic study of wildlife exposed to lead in the field. While the levels of plasma phenylalanine and isoleucine were significantly higher in a lead-contaminated area versus the control area, hydroxybutyric acid was marginally significantly higher in the contaminated area, suggesting the possibility of enhancement of lipid metabolism. In the interregional least-absolute shrinkage and selection operator (lasso) regression model analysis, phenylalanine and isoleucine were identified as possible biomarkers, which is in agreement with the random forest model. In addition, in the random forest model, glutaric acid, glutamine, and hydroxybutyric acid were selected. In agreement with previous studies, enrichment analysis showed alterations in the urea cycle and ATP-binding cassette transporter pathways. Although regional rodent species bias was observed in this study, and the relatively small sample size should be taken into account, the present results are to some extent consistent with those of previous studies on humans and laboratory animals.

Journal ArticleDOI
TL;DR: In this paper , the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression was investigated by analyzing clinical samples, and the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence and poor outcomes of HCC clinically.
Abstract: Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.

Journal ArticleDOI
TL;DR: In this article , oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden, which accelerated the onset of liver tumors.
Abstract: Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS’s ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While β-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.

Journal ArticleDOI
TL;DR: A retrospective chart review was performed on patients with urea cycle defects, organic acidemias, and amino acidopathies who underwent LT at the Children's Hospital of Philadelphia, with generally favorable outcome.
Abstract: Liver transplantation (LT) has been used for many years as a therapeutic option for certain inborn errors of metabolism (IEMs). Here we present one institution's 27 years of experience with LT in IEMs. Our objective is to assess the outcomes of IEM patients who have undergone LT, which we hypothesize to be generally successful for prevention of metabolic decompensation. A retrospective chart review was performed on patients with urea cycle defects, organic acidemias, and amino acidopathies who underwent LT at the Children's Hospital of Philadelphia. Thirty‐five patients with the following conditions have undergone LT: tyrosinemia (8), methylmalonic acidemia (7), maple syrup urine disease (6), citrullinemia (6), ornithine transcarbamylase deficiency (4), propionic acidemia (2), and argininosuccinate lyase deficiency (2). Average age at transplantation was 3.6 years. Three patients are now deceased. One patient suffered a metabolic stroke posttransplant. No episodes of metabolic decompensation have been noted. Thirty‐five patients received LT with generally favorable outcome. None sustained metabolic decompensation posttransplant. As has been reported previously, LT does not ameliorate pre‐existing developmental differences or risk to other organ systems. Further research is needed to aid in standardization of care and follow‐up, as most patients no longer follow with a geneticist.

Journal ArticleDOI
TL;DR: In this paper , a two-stage study was carried out to test the inhibition of argininosuccinate synthase (ASS) effects on ammonia detoxification in hyperammonemia yellow catfish.

Journal ArticleDOI
TL;DR: This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1-D.
Abstract: Arginase 1 Deficiency (ARG1‐D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1‐D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae. Nearly five decades of clinical experience with ARG1‐D and empirical studies in genetically manipulated models have generated a large body of evidence that, when considered in aggregate, implicates arginine directly in disease pathophysiology. Severe dietary protein restriction to minimize arginine intake and diversion of ammonia from the urea cycle are the mainstay of care. Although this approach does reduce plasma arginine and improve patients' cognitive and motor/mobility manifestations, it is inadequate to achieve and maintain sufficiently low arginine levels and prevent progression in the long term. This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1‐D.

Journal ArticleDOI
TL;DR: The case of a 56-year-old male with a history of early onset coronary artery disease, chronic back pain, and heavy tobacco use who was found unconscious at home by a neighbor and found to have toxic levels of serum ammonia is presented, adding evidence that the c.-106C>A OTC gene variant has pathogenic significance.
Abstract: Acute hyperammonemia in adult patients without liver disease is uncommon. Other etiologies are broad and can be difficult to rule out quickly. Urea cycle disorders such as ornithine transcarbamylase (OTC) deficiency are rare and often present in children. Adult-onset cases are rarer. This makes recognizing and treating late-onset urea cycle disorders challenging in the acute setting. We present the case of a 56-year-old male with a history of early onset coronary artery disease, chronic back pain, and heavy tobacco use who was found unconscious at home by a neighbor. He was found to have toxic levels of serum ammonia during further evaluation in the emergency department. Laboratory testing confirmed a diagnosis of OTC deficiency. Genetic analysis further showed a c.-106C>A variant of the OTC gene. Although extremely rare, late-onset urea cycle disorders should be considered when patients present with altered mental status with hyperammonemia of unknown etiology. Furthermore, this case adds evidence that the c.-106C>A OTC gene variant has pathogenic significance.

Journal ArticleDOI
TL;DR: In this paper , an algorithm for mild citrulline elevation at expanded newborn screening (NBS) was designed to guide the diagnostic process, which expanded the list of disorders to be included in the differential diagnosis.