scispace - formally typeset
Search or ask a question

Showing papers on "Wireless Routing Protocol published in 1998"


Proceedings ArticleDOI
25 Oct 1998
TL;DR: The results of a derailed packet-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocols, which cover a range of designchoices: DSDV,TORA, DSR and AODV are presented.
Abstract: An ad hoc networkis a collwtion of wirelessmobilenodes dynamically forminga temporarynetworkwithouttheuseof anyexistingnetworkirrfrastructureor centralizedadministration.Dueto the limitedtransmissionrange of ~vlrelessnenvorkinterfaces,multiplenetwork“hops”maybe neededfor onenodeto exchangedata ivithanotheracrox thenetwork.Inrecentyears, a ttiery of nelvroutingprotocols~geted specificallyat this environment havebeen developed.but little pcrfomrartwinformationon mch protocol and no ralistic performancecomparisonbehvwrrthem ISavailable. ~Is paper presentsthe results of a derailedpacket-levelsimulationcomparing fourmulti-hopwirelessad hoc networkroutingprotocolsthatcovera range of designchoices: DSDV,TORA, DSR and AODV. \Vehave extended the /~r-2networksimulatorto accuratelymodelthe MACandphysical-layer behaviorof the IEEE 802.1I wirelessLANstandard,includinga realistic wtrelesstransmissionchannelmodel, and present the resultsof simulations of net(vorksof 50 mobilenodes.

5,147 citations


Proceedings ArticleDOI
25 Oct 1998
TL;DR: An approach to utilize location information (for instance, obtained using the global positioning system) to improve performance of routing protocols for ad hoc networks is suggested.
Abstract: A mobile ad hoc network consists of wireless hosts that may move often. Movement of hosts results in a change in routes, requiring some mechanism for determining new routes. Several routing protocols have already been proposed for ad hoc networks. This report suggests an approach to utilize location information (for instance, obtained using the global positioning system) to improve performance of routing protocols for ad hoc networks.

2,854 citations


Proceedings ArticleDOI
25 Oct 1998
TL;DR: In this article, the authors present a case for using new power-aware metn.cs for determining routes in wireless ad hoc networks and show that using these new metrics ensures that the mean time to node failure is increased si~cantly.
Abstract: b this paper we present a case for using new power-aware metn.cs for determining routes in wireless ad hoc networks. We present five ~erent metriw based on battery power consumption at nodw. We show that using th=e metrics in a shortest-cost routing algorithm reduces the cost/packet of routing packets by 5-30% over shortwt-hop routing (this cost reduction is on top of a 40-70% reduction in energy consumption obtained by using PAMAS, our MAC layer prtocol). Furthermore, using these new metrics ensures that the mean time to node failure is increased si~cantly. An interesting property of using shortest-cost routing is that packet delays do not increase. Fintiy, we note that our new metrim can be used in most tradition routing protocols for ad hoc networks.

1,885 citations


Proceedings ArticleDOI
25 Oct 1998
TL;DR: A new routing protocol for ad hoc networks built around two novel observations, one of triggering the sending of location updates by the moving nodes autonomously, based on a node's mobility rate, and the other of minting the overhead used for maintaining routes using the two new principlw of update message frequency and distance.
Abstract: 1 Introduction h this paper we introduce a new routing protocol for ad hoc networks built around two novel observations. One, called the distance eflect, usw the fmt that the greater the distance separating two nodes, the slower they appear to be moving with respect to each other. Accor@gly, the location information in routing tables can be updated as a function of the distance separating nodes without compromising the routing accuracy. The second idea is that of triggering the sending of location updates by the moving nodes autonomously, based ody on a node's mobility rate. htuitively, it is clear that in a direction routing dgorithrn, routing information about the slower moving nodes needs to be updated less frequently than that about hig~y mobtie nodw. h this way e~ node can optimize the frequency at which it sends updates to the networks and correspondingly r~ duce the bandwidth and energy used, leading to a fully distributed and self-optimizing system. B~ed on thwe routing tablw, the proposed direction algorithm sends messages in the " recorded dwectionn of the destination node, guaranteeing detivery by following the direction with a given probability. We show by detailed simda-tion that our protocol always delivers more than 80% of the data messages by following the direction computed, without using any recovery procedure. In addition, it mintilzes the overhead used for maintaining routes using the two new principlw of update message frequency and distance. Lastly, the dgorithrn is fully distributed, provides loop-free paths, and is robust, since it suppfies multiple routes. Pemlissiontomakedigitalorhsrdcopiesof allorpartof this\vorkfor personal or classroom use is granted without fee provided that copies are not mzde or dis~.buted for prolit or commercial ad~arrtageand that copies bcwrthis notice and the full citation on the first page. To copy othm}tise, to republish, to post on senrers or to redistribute to lists, requires prior specific permission an&'ora fee. 76 Rom a routing perspective, an ad hoc network is a packet radio network in which the mobile nodes perform the routing functions. Generdy, routing is multi-hop since nodes may not be within the wireless transmission range of one another and thus depend on each other to forward packets to a given destination. Since the topology of an ad hoc network changes frequently, a routing protocol should be a distributed algorithm that computes multiple, cycle free routes while keeping the communication overhead to a minimum (see, e.g., [4]). One way to …

1,593 citations



Journal ArticleDOI
01 Jul 1998
TL;DR: A new multiaccess protocol based on the original MACA protocol with the adition of a separate signalling channel that conserves battery power at nodes by intelligently powering off nodes that are not actively transmitting or receiving packets.
Abstract: In this paper we develop a new multiaccess protocol for ad hoc radio networks. The protocol is based on the original MACA protocol with the adition of a separate signalling channel. The unique feature of our protocol is that it conserves battery power at nodes by intelligently powering off nodes that are not actively transmitting or receiving packets. The manner in which nodes power themselves off does not influence the delay or throughput characteristics of our protocol. We illustrate the power conserving behavior of PAMAS via extensive simulations performed over ad hoc networks containing 10-20 nodes. Our results indicate that power savings of between 10% and 70% are attainable in most systems. Finally, we discuss how the idea of power awareness can be built into other multiaccess protocols as well.

1,257 citations


Journal ArticleDOI
TL;DR: An overview of the QoS routing problem as well as the existing solutions is given, the strengths and weaknesses of different routing strategies, and the challenges are outlined.
Abstract: The upcoming gigabit-per-second high-speed networks are expected to support a wide range of communication-intensive real-time multimedia applications. The requirement for timely delivery of digitized audio-visual information raises new challenges for next-generation integrated services broadband networks. One of the key issues is QoS routing. It selects network routes with sufficient resources for the requested QoS parameters. The goal of routing solutions is twofold: (1) satisfying the QoS requirements for every admitted connection, and (2) achieving global efficiency in resource utilization. Many unicast/multicast QoS routing algorithms have been published, and they work with a variety of QoS requirements and resource constraints. Overall, they can be partitioned into three broad classes: (1) source routing, (2) distributed routing, and (3) hierarchical routing algorithms. We give an overview of the QoS routing problem as well as the existing solutions. We present the strengths and weaknesses of different routing strategies, and outline the challenges. We also discuss the basic algorithms in each class, classify and compare them, and point out possible future directions in the QoS routing area.

936 citations


Journal ArticleDOI
TL;DR: This work adopts a more general approach in which all paths between a source-destination pair are considered and incorporate network state information into the routing decision, and performs routing and wavelength assignment jointly and adaptively, and outperforms fixed routing techniques.
Abstract: We consider routing and wavelength assignment in wavelength-routed all-optical networks (WAN) with circuit switching. The conventional approaches to address this issue consider the two aspects of the problem disjointly by first finding a route from a predetermined set of candidate paths and then searching for an appropriate wavelength assignment. We adopt a more general approach in which we consider all paths between a source-destination (s-d) pair and incorporate network state information into the routing decision. This approach performs routing and wavelength assignment jointly and adaptively, and outperforms fixed routing techniques. We present adaptive routing and wavelength assignment algorithms and evaluate their blocking performance. We obtain an analytical technique to compute approximate blocking probabilities for networks employing fixed and alternate routing. The analysis can also accommodate networks with multiple fibers per link. The blocking performance of the proposed adaptive routing algorithms are compared along with their computational complexity.

543 citations


Proceedings ArticleDOI
01 Oct 1998
TL;DR: This paper studies the performance of route query control mechanisms for the recently proposed Zone Routing Protocol (ZRP) for ad-hoc networks and demonstrates how certain combinations of these techniques can be applied to single channel or multiple channel ad-Hoc networks to improve both the delay and control traffic performance of the ZRP.
Abstract: In this paper, we study the performance of route query control mechanisms for the recently proposed Zone Routing Protocol (ZRP) for ad-hoc networks. The ZRP proactively maintains routing information for a local neighborhood (routing zone), while reactively acquiring routes to destinations beyond the routing zone. This hybrid routing approach has the potential to be more efficient in the generation of control traffic than traditional routing schemes. However, without proper query control techniques, the ZRP can actually produce more traffic than standard flooding protocols.Our proposed query control schemes exploit the structure of the routing zone to provide enhanced detection (Query Detection (QD1/QD2)), termination (Loop-back Termination (LT), Early Termination (ET)) and prevention (Selective Bordercasting (SBC)) of overlapping queries. We demonstrate how certain combinations of these techniques can be applied to single channel or multiple channel ad-hoc networks to improve both the delay and control traffic performance of the ZRP. Our query control mechanisms allow the ZRP to provide routes to all accessible network nodes with only a fraction of the control traffic generated by purely proactive distance vector and purely reactive flooding schemes, and with a response time as low as 10% of a flooding route query delay.

514 citations


Proceedings ArticleDOI
07 Jun 1998
TL;DR: A new scheme especially designed for routing in an ad-hoc wireless environments, called "global state routing" (GSR), where nodes exchange vectors of link states among their neighbors during routing information exchange, which provides a better solution than existing approaches in a truly mobile, ad-Hoc environment.
Abstract: In an ad-hoc environment with no wired communication infrastructure, it is necessary that mobile hosts operate as routers in order to maintain the information about connectivity. However with the presence of high mobility and low signal/interference ratio (SIR), traditional routing schemes for wired networks are not appropriate, as they either lack the ability to quickly reflect the changing topology, or may cause excessive overhead, which degrades network performance. Considering these restrictions, we propose a new scheme especially designed for routing in an ad-hoc wireless environments. We call this scheme "global state routing" (GSR), where nodes exchange vectors of link states among their neighbors during routing information exchange. Based on the link state vectors, nodes maintain a global knowledge of the network topology and optimize their routing decisions locally. The performance of the algorithm, studied in this paper through a series of simulations, reveals that this scheme provides a better solution than existing approaches in a truly mobile, ad-hoc environment.

478 citations


Patent
24 Aug 1998
TL;DR: In this article, two network communication protocols, one for routing and one for mobility management, are presented that are particularly suited for use with ad-hoc networks, and the reactive procedure is limited during route discovery to queries of only those nodes located on the periphery of routing zones.
Abstract: Two network communication protocols, one for routing and one for mobility management, are presented that are particularly suited for use with ad-hoc networks. The routing protocol is a proactive-reactive hybrid routing protocol that limits the scope of the proactive procedure to the node's local neighborhood. Routing zones are defined for each node that include nodes whose distance from the subject node in hops is at most some predefined number, referred to as the zone radius. Each node is required to know the topology of the network within its routing zone only. The reactive procedure is limited during route discovery to queries of only those nodes located on the periphery of routing zones. In this manner, the queries hop across nodes in distances of zone radius, thus limiting the scope of the reactive procedure. The zone radius is preferably adjustable to accommodate different and differing network topologies and network operational conditions in the most efficient manner. The mobility management protocol relies on some network nodes assuming the mobility management function. In this scheme, each network node is “associated” with one or more mobility management nodes. The mobility management nodes form a virtual network which is embedded within the actual ad-hoc network. Each mobility management node knows the location of all nodes within its zone, and communicates this information to any other mobility management node that requests it.

Proceedings ArticleDOI
01 Oct 1998
TL;DR: Extensions to the basic QoS routing are developed that can achieve good routing performance with limited update generation rates and the impact on the results of a number of secondary factors such as topology, high level admission control, and characteristics of network traffic.
Abstract: Recent studies provide evidence that Quality of Service (QoS) routing can provide increased network utilization compared to routing that is not sensitive to QoS requirements of traffic. However, there are still strong concerns about the increased cost of QoS routing, both in terms of more complex and frequent computations and increased routing protocol overhead. The main goals of this paper are to study these two cost components, and propose solutions that achieve good routing performance with reduced processing cost. First, we identify the parameters that determine the protocol traffic overhead, namely (a) policy for triggering updates, (b) sensitivity of this policy, and (c) clamp down timers that limit the rate of updates. Using simulation, we study the relative significance of these factors and investigate the relationship between routing performance and the amount of update traffic. In addition, we explore a range of design options to reduce the processing cost of QoS routing algorithms, and study their effect on routing performance. Based on the conclusions of these studies, we develop extensions to the basic QoS routing, that can achieve good routing performance with limited update generation rates. The paper also addresses the impact on the results of a number of secondary factors such as topology, high level admission control, and characteristics of network traffic.

Proceedings ArticleDOI
12 Oct 1998
TL;DR: It is observed that the new generation of on-demand routing protocols use a much lower routing load, however the traditional link state and distance vector protocols provide, in general, better packet delivery and delay performance.
Abstract: We evaluate several routing protocols for mobile, wireless, ad hoc networks via packet level simulations. The protocol suite includes routing protocols specifically designed for ad hoc routing, as well as more traditional protocols, such as link state and distance vector used for dynamic networks. Performance is evaluated with respect to fraction of packets delivered, end-to-end delay and routing load for a given traffic and mobility model. It is observed that the new generation of on-demand routing protocols use a much lower routing load. However the traditional link state and distance vector protocols provide, in general, better packet delivery and delay performance.

Proceedings ArticleDOI
06 Jan 1998
TL;DR: AntNet is an adaptive, distributed, mobile-agents-based algorithm which was inspired by recent work on the ant colony metaphor and showed both very good performances and robustness under all the experimental conditions with respect to its competitors.
Abstract: This paper introduces AntNet, a new routing algorithm for telecommunication networks. AntNet is an adaptive, distributed, mobile-agents-based algorithm which was inspired by recent work on the ant colony metaphor. We apply AntNet in a datagram network and compare it with both static and adaptive state-of-the-art routing algorithms. We ran experiments for various paradigmatic temporal and spatial traffic distributions. AntNet showed both very good performances and robustness under all the experimental conditions with respect to its competitors.

Proceedings ArticleDOI
11 Oct 1998
TL;DR: The simulation results show that the bandwidth routing algorithm is very useful in extending the ATM virtual circuit service to the wireless network and enables an efficient call admission control.
Abstract: The emergence of nomadic applications have generated a lot of interest in wireless network infrastructures which support multimedia services. We propose a bandwidth routing algorithm for multimedia support in a multihop wireless network. This network can be interconnected to wired networks (e.g. ATM or the Internet) or stand alone. Our bandwidth routing includes bandwidth calculation and reservation schemes. Under such a routing algorithm, we can derive a route to satisfy the bandwidth requirement for the QoS constraint. At a source node, the bandwidth information can be used to decide to accept a new call or not immediately. This is specially important to carry out a fast handoff when interconnecting to an ATM backbone infrastructure. It enables an efficient call admission control. The simulation results show that the bandwidth routing algorithm is very useful in extending the ATM virtual circuit service to the wireless network. Different types of QoS traffic can be integrated in such a dynamic radio network with high performance.


Proceedings ArticleDOI
08 Nov 1998
TL;DR: The protocol-termed the lightweight adaptive multicast (LAM) routing algorithm-is designed for use in a Mobile Ad hoc NETwork (MANET) and can be thought of as an integration of the CORE based tree (CBT) multicast routing protocol and TORA.
Abstract: In this paper, we present a multicast protocol which is built upon the temporally-ordered routing algorithm (TORA). The protocol-termed the lightweight adaptive multicast (LAM) routing algorithm-is designed for use in a Mobile Ad hoc NETwork (MANET) and, conceptually, can be thought of as an integration of the CORE based tree (CBT) multicast routing protocol and TORA. The direct coupling of LAM and TORA increases reaction efficiency (lowering protocol control overhead) as the new protocol can benefit from TORA's mechanisms while reacting to topological changes. Also during periods of stable topology and constant group membership, the LAM protocol does not introduce any additional overhead because it does not require timer-based messaging during its execution.

Proceedings Article
01 Jan 1998
TL;DR: Two versions of AntNet, a novel approach to adaptive learning of routing tables in wide area best-effort datagram networks, are presented, showing superior performance with respect to the current Internet routing algorithm (OSPF), some improved old Internet routing algorithms, and recently proposed forms of asynchronous online Bellman-Ford.

Proceedings ArticleDOI
12 Oct 1998
TL;DR: This work proposes a distributed routing scheme, called ticket-based probing, which searches multiple paths in parallel for a satisfactory one, designed to work with imprecise state information and can tolerate high degree of information imprecision.
Abstract: The goal of quality-of-service (QoS) routing is to find a network path which has sufficient resources to satisfy certain constraints on delay, bandwidth and/or other metrics. The network state information maintained at every node is often imprecise in a dynamic environment because of nonnegligible propagation delay of state messages, periodic updates due to overhead concern, and hierarchical state aggregation. The information imprecision makes QoS routing difficult. The traditional shortest-path routing algorithm does not provide satisfactory performance with imprecise state information. We propose a distributed routing scheme, called ticket-based probing, which searches multiple paths in parallel for a satisfactory one. The scheme is designed to work with imprecise state information. It allows the dynamic trade-off between the routing performance and the overhead. The state information of intermediate nodes is collectively used to guide the routing messages along the most appropriate paths in order to maximize the success probability. The proposed algorithm consider not only the QoS requirements but also the cost optimality of the routing path. Extensive simulations show that our algorithm achieve high call-admission ratio and low-cost routing paths with modest overhead. The algorithm can tolerate high degree of information imprecision.

Proceedings ArticleDOI
11 Oct 1998
TL;DR: An integrated QoS routing framework based on selective probing for high-speed packet-switching networks and controlled diffusion computations is proposed, which captures the common messaging and computational structure of distributedQoS routing, and allows an efficient implementation due to its simplicity.
Abstract: We propose an integrated QoS routing framework based on selective probing for high-speed packet-switching networks. The framework is fully distributed and depends only on the local state maintained at every individual node. By using controlled diffusion computations, the framework captures the common messaging and computational structure of distributed QoS routing, and allows an efficient implementation due to its simplicity. Different distributed routing algorithms (DRAs) can be quickly developed by specifying only a few well-defined constraint-dependent parameters within the framework. Our simulation shows that the overhead of the proposed algorithms is stable and modest.

Journal ArticleDOI
TL;DR: This work introduces a self organizing network structure called a spine and proposes a spine-based routing infrastructure for routing in ad hoc networks and proposes two spine routing algorithms: Optimal Spine Routing (OSR), which uses full and up-to-date knowledge of the network topology, and (b) Partial-knowledge SpineRouting (PSR, which uses partialknowledge of thenetwork topology.
Abstract: An ad hoc network is a multihop wireless network in which mobile hosts communicate without the support of a wired backbone for routing messages. We introduce a self organizing network structure called a spine and propose a spine-based routing infrastructure for routing in ad hoc networks. We propose two spine routing algorithms: (a) Optimal Spine Routing (OSR), which uses full and up-to-date knowledge of the network topology, and (b) Partial-knowledge Spine Routing (PSR), which uses partial knowledge of the network topology. We analyze the two algorithms and identify the optimality-overhead trade-offs involved in these algorithms.

Journal ArticleDOI
TL;DR: This work focuses on (partial) permutation, k-relation routing, routing to random destinations, dynamic routing, isotonic routing, fault tolerant routing, and related sorting results.

Proceedings ArticleDOI
29 Mar 1998
TL;DR: It is demonstrated that for multipath sets that are suffix matched, forwarding can be efficiently implemented with (1) a per packet overhead of a small, fixed-length path identifier, and (2) router space overhead linear in K, the number of alternate paths between a source and a destination.
Abstract: We motivate and formally define dynamic multipath routing and present the problem of packet forwarding in the multipath routing context. We demonstrate that for multipath sets that are suffix matched, forwarding can be efficiently implemented with (1) a per packet overhead of a small, fixed-length path identifier, and (2) router space overhead linear in K, the number of alternate paths between a source and a destination. We derive multipath forwarding schemes for suffix matched path sets computed by both de-centralized (link-state) and distributed (distance-vector) routing algorithms. We also prove that (1) distributed multipath routing algorithms compute suffix matched multipath sets, and (2) for the criterion of ranked k-shortest paths, decentralized routing algorithms also yield suffix matched multipath sets.

Proceedings ArticleDOI
11 Oct 1998
TL;DR: A tailored version of string migration for the genetic routing algorithm is proposed in order to realize effective information exchanges among nodes to have optimal route with less communication overhead in the network.
Abstract: This paper presents a string migration scheme for an adaptive network routing algorithm called a genetic routing algorithm which employs genetic operators to create alternative routes in a routing table. String migrations are employed usually in islands model of parallel or distributed genetic algorithms, which exchange strings among subpopulations to accelerate their convergence. We propose a tailored version of string migration for the genetic routing algorithm in order to realize effective information exchanges among nodes to have optimal route with less communication overhead in the network.

Journal ArticleDOI
TL;DR: A general theoretical framework for the study of deadlock-free routing functions and gives a general definition of what can be a routing function, which embraces most of the theories related to deadlock avoidance in wormhole-routed networks previously derived in the literature.
Abstract: Most machines of the last generation of distributed memory parallel computers possess specific routers which are used to exchange messages between nonneighboring nodes in the network. Among the several technologies, wormhole routing is usually preferred because it allows low channel-setup time and reduces the dependency between latency and internode distance. However, wormhole routing is very susceptible to deadlock because messages are allowed to hold many resources while requesting others. Therefore, designing deadlock-free routing algorithms using few hardware facilities is a major problem for wormhole-routed networks. In this paper, we describe a general theoretical framework for the study of deadlock-free routing functions. We give a general definition of what can be a routing function. This definition captures many specific definitions of the literature (e.g., vertex dependent, input-dependent, source-dependent, path-dependent etc.). Using our definition, we give a necessary and sufficient condition which characterizes deadlock-free routing functions. Our theory embraces, at a high level, most of the theories related to deadlock avoidance in wormhole-routed networks previously derived in the literature. In particular, it applies not only to one-to-one routing, but also to one-to-many routing. The latter paradigm is used to solve the multicast problem with the path-based or tree-based facility.

Proceedings ArticleDOI
30 Jun 1998
TL;DR: This work proposes a self-organizing, dynamic infrastructure called a spine for efficient routing in ad hoc networks that encompasses a range of knowledge at each spine node, and identifies the trade-offs involved for routing at different points in this range.
Abstract: This work proposes a self-organizing, dynamic infrastructure called a spine for efficient routing in ad hoc networks. We present a scalable framework for routing that encompasses a range of knowledge at each spine node, and identify the trade-offs involved for routing at different points in this range. Our routing algorithm requires only partial topology information at each spine node, consisting of the spine structure, dependants of each spine node, propagation of long-lived links, and snooped routing information from ongoing flows. Through worst-case theoretical bounds and simulation of typical scenarios, we show that the spine-based routing with only partial topology information provides good routes at low overhead.

05 Oct 1998
TL;DR: This draft presents CEDAR, a Core-Extraction Distributed Ad hoc Routing algorithm for QoS routing in ad hoc network environments, and a QoS route computation algorithm that is executed at the core nodes using only locally available state.
Abstract: This draft presents CEDAR, a Core-Extraction Distributed Ad hoc Routing algorithm for QoS routing in ad hoc network environments. CEDAR has three key components: (a) the establishment and maintenance of a self-organizing routing infrastructure, called the "core", for performing route computations, (b) the propagation of the link-state of stable high-bandwidth links in the core through "increase/decrease" waves, and (c) a QoS route computation algorithm that is executed at the core nodes using only locally available state. Sivakumar, Sinha, Bharghavan [Page 1] INTERNET-DRAFT CEDAR Specification October 1998

Proceedings ArticleDOI
07 Jun 1998
TL;DR: It is demonstrated that ZRP significantly reduces the delay and the amount of routing overhead by providing each node with continuous updates of its local neighborhood (routing zone) topology only.
Abstract: In this paper, we investigate the performance of a novel routing protocol, the zone routing protocol (ZRP), that was introduced in Haas (1997). The protocol is targeted at a special class of ad-hoc networks, which we refer to as the reconfigurable wireless networks (RWNs). RWNs are distinguished from other ad-hoc networks by their increased node mobility, larger number of nodes, and wider network span. We demonstrate that ZRP significantly reduces the delay and the amount of routing overhead by providing each node with continuous updates of its local neighborhood (routing zone) topology only. The structure of the routing zone is exploited to efficiently acquire routes on demand for destinations that lie beyond a node's routing zone. By adjusting a single parameter-the size of the routing zone-the ZRP can adapt to a variety of network operational conditions.

Proceedings ArticleDOI
18 May 1998
TL;DR: This work presents a generalized approach called "k-hop cluster-based dynamic source routing", which is simple and can take actions on the host movements quickly and consider the overall channel utilization as well as host mobility.
Abstract: The existing wireless networks, such as cellular networks, personal communication services and mobile Internet protocol use the fixed network as their backbones. However in the situations like disaster rescues, wireless conferences in the hall, or battlefields, there exists no fixed communication infrastructure. Therefore, routing to send data packets to their destinations becomes very difficult. Distance vector and link state protocols used in the existing fixed networks are not suitable for supporting host movements. Variations of distance vector protocol, dynamic source muting schemes, and cluster-based schemes have been suggested to solve the muting problem in this entirely wireless network. However, since the link channel resource is very scarce, the muting scheme must consider the overall channel utilization as well as host mobility. We present a generalized approach called "k-hop cluster-based dynamic source routing". This approach is simple and can take actions on the host movements quickly.

Proceedings ArticleDOI
07 Jun 1998
TL;DR: A routing algorithm called probabilistic routing protocol (PRP) is introduced that reduces the number of re-routing attempts due to the dynamic topology of the network and the performance of the algorithm is investigated using simulation experiments.
Abstract: Low Earth orbit (LEO) satellite networks have dynamic, yet deterministic, topologies. The time-varying connectivity pattern would result in the re-routing of all connections passing through a link that is turned off as a result of the topology change. A routing algorithm called probabilistic routing protocol (PRP) is introduced. The PRP reduces the number of re-routing attempts due to the dynamic topology of the network. During the routing phase of a newly arriving call, the PRP eliminates the links that will be turned off before the call releases the link due to call termination or connection handover. Since the algorithm has no knowledge of the call duration or exact terminal location, route usage time is only known probabilistically. The probability distribution function of the route usage time of the call is determined to realize the algorithm. Since the routing algorithm works in parallel with a handover re-routing algorithm, the application to the footprint handover re-routing protocol (FHRP) is also demonstrated. The performance of the algorithm is investigated using simulation experiments.