scispace - formally typeset
Search or ask a question

Showing papers by "Alexander Dietrich published in 2017"


Journal ArticleDOI
Christopher J. Milne, Thomas Schietinger, M. Aiba, Arturo Alarcon, J. Alex, Alexander Anghel, Vladimir Arsov, Carl Beard, Paul Beaud, Simona Bettoni, M. Bopp, H. Brands, Manuel Brönnimann, Ingo Brunnenkant, Marco Calvi, A. Citterio, Paolo Craievich, Marta Csatari Divall, Mark Dällenbach, Michael D’Amico, Andreas Dax, Yunpei Deng, Alexander Dietrich, Roberto Dinapoli, Edwin Divall, Sladana Dordevic, Simon Ebner, Christian Erny, Hansrudolf Fitze, Uwe Flechsig, Rolf Follath, F. Frei, Florian Gärtner, Romain Ganter, Terence Garvey, Zheqiao Geng, I. Gorgisyan, C. Gough, A. Hauff, Christoph P. Hauri, Nicole Hiller, Tadej Humar, Stephan Hunziker, Gerhard Ingold, Rasmus Ischebeck, Markus Janousch, Pavle Juranić, M. Jurcevic, Maik Kaiser, Babak Kalantari, Roger Kalt, B. Keil, Christoph Kittel, Gregor Knopp, W. Koprek, Henrik T. Lemke, Thomas Lippuner, Daniel Llorente Sancho, Florian Löhl, C. Lopez-Cuenca, Fabian Märki, F. Marcellini, G. Marinkovic, Isabelle Martiel, Ralf Menzel, Aldo Mozzanica, Karol Nass, Gian Luca Orlandi, Cigdem Ozkan Loch, Ezequiel Panepucci, Martin Paraliev, Bruce D. Patterson, Bill Pedrini, Marco Pedrozzi, Patrick Pollet, Claude Pradervand, Eduard Prat, Peter Radi, Jean-Yves Raguin, S. Redford, Jens Rehanek, Julien Réhault, Sven Reiche, Matthias Ringele, J. Rittmann, Leonid Rivkin, Albert Romann, Marie Ruat, C. Ruder, Leonardo Sala, Lionel Schebacher, T. Schilcher, Volker Schlott, Thomas J. Schmidt, Bernd Schmitt, Xintian Shi, M. Stadler, L. Stingelin, Werner Sturzenegger, Jakub Szlachetko, D. Thattil, D. Treyer, A. Trisorio, Wolfgang Tron, S. Vetter, Carlo Vicario, Didier Voulot, Meitian Wang, Thierry Zamofing, Christof Zellweger, R. Zennaro, Elke Zimoch, Rafael Abela, Luc Patthey, Hans-Heinrich Braun 
TL;DR: The SwissFEL X-ray Free Electron Laser (XFEL) facility as discussed by the authors started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard Xray branch.
Abstract: The SwissFEL X-ray Free Electron Laser (XFEL) facility started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard X-ray branch. In the following sections we will summarize the various aspects of the project, including the design of the soft and hard X-ray branches of the accelerator, the results of SwissFEL performance simulations, details of the photon beamlines and experimental stations, and our first commissioning results.

295 citations


Journal ArticleDOI
TL;DR: It is concluded that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD.
Abstract: CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences.

162 citations


Journal ArticleDOI
TL;DR: The results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.
Abstract: Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high‐resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5 ‐triple‐knockout ( Trpc1/4/5 −/− ) mice, lacking any TRPC1‐, TRPC4‐, or TRPC5‐containing channels, action potential‐triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo , Trpc1/4/5 −/− mice displayed impaired cross‐frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5 −/− animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.

85 citations


Journal ArticleDOI
TL;DR: Recent evidence for an involvement of TRP channels expressed in the lung in pathways of toxin sensing and as mediators of lung inflammation and associated diseases like asthma, COPD, lung fibrosis and edema formation is summarized.

43 citations


Journal ArticleDOI
TL;DR: It is concluded that TRPC6 is an important determinant for TGF-β1-induced myofibroblast differentiation during fibrosis and specific channel inhibitors might be beneficial in a future treatment of PF.

39 citations


Journal ArticleDOI
TL;DR: Findings suggest that TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury and a unique genetic variation in the TRPC 6 gene promoter has been identified.
Abstract: Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable non-selective cation channel that is widely expressed in the heart, lung, and vascular tissues. The use of TRPC6-deficient ("knockout") mice has provided important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasoconstriction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has been identified, which might link the inflammatory response to the upregulation of TRPC6 expression and ultimate development of pulmonary vascular abnormalities in idiopathic pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest findings on the role of TRPC6 in the pulmonary vasculature.

37 citations


Book ChapterDOI
TL;DR: The extensive literature about the ROS-mediated cellular signalling during ischaemia-reperfusion injury is reviewed, as well as the effectiveness of antioxidants as treatment option for LIRI are reviewed.
Abstract: Lung ischaemia–reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia–reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.

28 citations


Book ChapterDOI
01 Jan 2017
TL;DR: A vast array of ion channels and transporters is known to be involved in the filtration, secretion, and reabsorption of electrolytes in the renal tubular system.
Abstract: One key function of the kidneys is the ultrafiltration of plasma by the renal glomeruli in order to dispose of metabolic end products and excess electrolytes. However, in order to maintain body electrolyte homeostasis, the vast majority of filtrated salts and water are reabsorbed along the different segments of the renal tubular system. For instance, approximately 80% of total serum Mg2+ is filtered in the glomeruli with more than 95% being reabsorbed along the nephron. A vast array of ion channels and transporters is known to be involved in the filtration, secretion, and reabsorption of electrolytes.

3 citations