scispace - formally typeset
Search or ask a question

Showing papers by "Cheryl Gillett published in 2018"


Journal ArticleDOI
TL;DR: The phase 3 TNT Trial in subjects with triple-negative breast cancer supports the superiority of carboplatin over docetaxel in BRCA1/2-mutated tumors and a greater response to taxanes in the nonbasal subtype, and concludes that patients with advanced TNBC benefit from characterization of BRC a/2 mutations, but not BRC1 methylation or Myriad HRD analyses, to inform choices on platinum-based chemotherapy.
Abstract: Germline mutations in BRCA1/2 predispose individuals to breast cancer (termed germline-mutated BRCA1/2 breast cancer, gBRCA-BC) by impairing homologous recombination (HR) and causing genomic instability. HR also repairs DNA lesions caused by platinum agents and PARP inhibitors. Triple-negative breast cancers (TNBCs) harbor subpopulations with BRCA1/2 mutations, hypothesized to be especially platinum-sensitive. Cancers in putative 'BRCAness' subgroups-tumors with BRCA1 methylation; low levels of BRCA1 mRNA (BRCA1 mRNA-low); or mutational signatures for HR deficiency and those with basal phenotypes-may also be sensitive to platinum. We assessed the efficacy of carboplatin and another mechanistically distinct therapy, docetaxel, in a phase 3 trial in subjects with unselected advanced TNBC. A prespecified protocol enabled biomarker-treatment interaction analyses in gBRCA-BC and BRCAness subgroups. The primary endpoint was objective response rate (ORR). In the unselected population (376 subjects; 188 carboplatin, 188 docetaxel), carboplatin was not more active than docetaxel (ORR, 31.4% versus 34.0%, respectively; P = 0.66). In contrast, in subjects with gBRCA-BC, carboplatin had double the ORR of docetaxel (68% versus 33%, respectively; biomarker, treatment interaction P = 0.01). Such benefit was not observed for subjects with BRCA1 methylation, BRCA1 mRNA-low tumors or a high score in a Myriad HRD assay. Significant interaction between treatment and the basal-like subtype was driven by high docetaxel response in the nonbasal subgroup. We conclude that patients with advanced TNBC benefit from characterization of BRCA1/2 mutations, but not BRCA1 methylation or Myriad HRD analyses, to inform choices on platinum-based chemotherapy. Additionally, gene expression analysis of basal-like cancers may also influence treatment selection.

620 citations



Journal ArticleDOI
TL;DR: In breast cancer models, an IL-6 driven co-expression of FAP and HO-1 in tumour-associated macrophages, similar to the wound healing response, facilitates migration and metastatic spread.
Abstract: Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.

76 citations


Journal ArticleDOI
TL;DR: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses.
Abstract: Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.

58 citations


Journal ArticleDOI
TL;DR: It is demonstrated that SnMP inhibits immune suppression of chemotherapy-elicited CD8+ T cells by targeting myeloid HO-1 activity in the tumor microenvironment, and could represent a novel immune checkpoint therapy, which may improve the immunological response to chemotherapy.
Abstract: Purpose: Unprecedented clinical outcomes have been achieved in a variety of cancers by targeting immune checkpoint molecules. This preclinical study investigates heme oxygenase-1 (HO-1), an immunosuppressive enzyme that is expressed in a wide variety of cancers, as a potential immune checkpoint target in the context of a chemotherapy-elicited antitumor immune response. We evaluate repurposing tin mesoporphyrin (SnMP), which has demonstrated safety and efficacy targeting hepatic HO in the clinic for the treatment of hyperbilirubinemia, as an immune checkpoint blockade therapy for the treatment of cancer.Experimental Design: SnMP and genetic inactivation of myeloid HO-1 were evaluated alongside 5-fluorouracil in an aggressive spontaneous murine model of breast cancer (MMTV-PyMT). Single-cell RNA sequencing analysis, tumor microarray, and clinical survival data from breast cancer patients were used to support the clinical relevance of our observations.Results: We demonstrate that SnMP inhibits immune suppression of chemotherapy-elicited CD8+ T cells by targeting myeloid HO-1 activity in the tumor microenvironment. Microarray and survival data from breast cancer patients reveal that HO-1 is a poor prognostic factor in patients receiving chemotherapy. Single-cell RNA-sequencing analysis suggests that the myeloid lineage is a significant source of HO-1 expression, and is co-expressed with the immune checkpoints PD-L1/2 in human breast tumors. In vivo, we therapeutically compare the efficacy of targeting these two pathways alongside immune-stimulating chemotherapy, and demonstrate that the efficacy of SnMP compares favorably with PD-1 blockade in preclinical models.Conclusions: SnMP could represent a novel immune checkpoint therapy, which may improve the immunological response to chemotherapy. Clin Cancer Res; 24(7); 1617-28. ©2018 AACR.

46 citations


Journal ArticleDOI
01 Jan 2018
TL;DR: By incorporating histopathological patterns of involved and uninvolved LNs combined with primary tumour immune and stromal features, the prediction of developing distant metastasis in LN‐positive breast cancers can be estimated more accurately.
Abstract: The prognostic importance of lymph node (LN) status and tumour-infiltrating lymphocytes (TILs), is well established, particularly TILs in triple negative breast cancers (TNBCs). So far, few studies have interrogated changes in involved and uninvolved LNs and evaluated if their morphological patterns add valuable information for the prediction of disease progression in breast cancer. In a cohort of 309 patients enriched for TNBCs (170/309), we histologically characterised immune and stromal features in primary tumours and associated involved and uninvolved axillary LNs on routine haematoxylin and eosin stained sections. Of the 309 patients, 143 had LN-positive disease. Twenty-five histopathological features were assessed, including the degree of TIL presence, quantitative and qualitative assessment of germinal centres (GCs) and sinus histiocytosis. Multivariate and cross-validated proportional hazard regression analyses were used to identify optimal covariate sets for prediction of distant metastasis-free survival (DMFS). The degree of intratumoural and peritumoural immune infiltrate was associated with architectural changes in both uninvolved and involved LNs. By including clinicopathological characteristics as well as tumour and LN histopathological features in L2-regularised proportional hazard models, the prediction of 5-year DMFS was improved by 3-15% over the baseline in all cancers and in TNBCs. In LN-positive cancers, the combination of Salgado's classification, lymphocytic lobulitis, size and number of GCs in the uninvolved LNs and location of GCs in the involved LNs carried significant prognostic information. From these features, a multivariate cross-validation-stable risk signature was constructed, which identified low-risk groups within both LN-positive breast cancers and the LN-positive TNBCs group with a 10-year DMFS probability of 78 and 87%, respectively. This study illustrates that, by incorporating histopathological patterns of involved and uninvolved LNs combined with primary tumour immune and stromal features, the prediction of developing distant metastasis in LN-positive breast cancers can be estimated more accurately.

28 citations


Journal ArticleDOI
TL;DR: It is shown that MED12 mutations can be heterogeneous in both synchronous and recurrent PTs unlike TERT mutations, and that RBM15 mutations may be important in the pathogenesis of borderline/malignant PTs.
Abstract: MED12 and TERT promoter mutations have been shown to be the most common somatic mutations in phyllodes tumours (PTs). The aims of this study were to determine the frequency of these mutations in recurrent PTs, assess whether TERT promoter mutations could be helpful in distinguishing fibroadenomas (FAs) from PTs and identify novel mutations that may be driving malignant progression. MED12 and the TERT promoter were Sanger sequenced in 75 primary PTs, 21 recurrences, 19 single FAs and 2 cases of multiple FAs with benign PTs. Whole-exome sequencing was performed on one borderline PT. Recurrent PTs and multiple FAs showed temporal discordance in MED12 but not TERT. Recurrent samples did acquire TERT mutations, with recurrent benign PTs more likely to have mutations in both genes. TERT mutations were not helpful in differentiating between benign PTs and FAs in cases of multiple FAs/PTs. Exome sequencing revealed a nonsense mutation in RBM15 and Sanger sequencing revealed another three RBM15 mutations in malignant/borderline PTs. This study has shown that MED12 mutations can be heterogeneous in both synchronous and recurrent PTs unlike TERT mutations. We have also shown that RBM15 mutations may be important in the pathogenesis of borderline/malignant PTs.

26 citations