scispace - formally typeset
Search or ask a question

Showing papers by "Gerald T. Ankley published in 2012"


Journal ArticleDOI
TL;DR: This exercise prioritized the most critical questions regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas.
Abstract: Background: Over the past 10–15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and p...

1,058 citations


Journal ArticleDOI
TL;DR: The results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.
Abstract: Effects of bisphenol A (BPA) on ovarian transcript profiles as well as targeted end points with endocrine/reproductive relevance were examined in two fish species, fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), exposed in parallel using matched experimental designs. Four days of waterborne exposure to 10 μg BPA/L caused significant vitellogenin induction in both species. However, zebrafish were less sensitive to effects on hepatic gene expression and steroid production than fathead minnow and the magnitude of vitellogenin induction was more modest (i.e., 3-fold compared to 13,000-fold in fathead minnow). The concentration-response at the ovarian transcriptome level was nonmonotonic and violated assumptions that underlie proposed methods for estimating hazard thresholds from transcriptomic results. However, the nonmonotonic profile was consistent among species and there were nominal similarities in the functions associated with the differentially expressed genes, suggesting potential activation of common pathway perturbation motifs in both species. Overall, the results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.

96 citations


Journal ArticleDOI
TL;DR: Results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development.
Abstract: Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo–larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo–larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development. Environ. Toxicol. Chem. 2012;31:611–622. © 2011 SETAC

94 citations


Journal ArticleDOI
TL;DR: Clear evidence is observed of the ability of BPA to mitigate the impact of TB, consistent with an antiandrogenic MOA, using in vivo exposures of fathead minnows to BPA either alone or in a binary mixture with 17β-trenbolone (TB), a strong AR agonist.
Abstract: Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some data suggest that BPA may also behave as an androgen receptor (AR) antagonist. However, direct evidence of this activity is deficient. To address this knowledge gap, we employed a metabolomic approach using in vivo exposures of fathead minnows (FHM; Pimephales promelas) to BPA either alone or in a binary mixture with 17β-trenbolone (TB), a strong AR agonist. Changes in liver metabolite profiles in female FHM in response to these exposures were determined using high resolution 1H NMR spectroscopy and multivariate and univariate statistics. Using this approach, we observed clear evidence of the ability of BPA to mitigate the impact of TB, consistent with an antiandrogenic MOA. In addition, a transcriptional activation assay with the...

45 citations


Journal ArticleDOI
TL;DR: The results demonstrate the complex, temporally dynamic nature of the vertebrate HPG system in response to chemical stressors.

43 citations


Journal ArticleDOI
TL;DR: There is no evidence for significant physiological or reproductive impacts of gemfibrozil at an environmentally relevant concentration of 1.5 µg/L, and expression of several hepatic genes important to lipid metabolism was altered, suggesting that gemfiberzil does affect lipid metabolism in fish.
Abstract: Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors. Gemfibrozil is a fibrate that has been detected in wastewater treatment plant influents, effluents, and drinking water. The objective of the present study was to assess the potential physiological and reproductive impacts of gemfibrozil on fathead minnows (Pimephales promelas). Fish were exposed to gemfibrozil in two different studies. The first was a short-term test with water concentrations of 0, 15, and 600 µg gemfibrozil/L, sampling after 2 or 8 d of exposure. Plasma cholesterol concentrations were significantly reduced in males exposed to 600 µg gemfibrozil/L for 8 d. In addition, expression of several hepatic genes important to lipid metabolism was altered, suggesting that gemfibrozil does affect lipid metabolism in fish. A 21-d study was conducted to investigate further the effects on lipid metabolism and steroidogenesis as well as to assess potential impacts of gemfibrozil on reproduction. Fish were exposed to water concentrations of 0, 1.5, 15, 600, and 1,500 µg gemfibrozil/L. Exposure to 1,500 µg gemfibrozil/L caused a modest, but not significant, reduction in fecundity. However, gemfibrozil had no consistent effect on plasma cholesterol, triglycerides, or sex steroids after 21 d of exposure. The present study showed no evidence for significant physiological or reproductive impacts of gemfibrozil at an environmentally relevant concentration of 1.5 µg/L.

42 citations


Journal ArticleDOI
07 Nov 2012-PLOS ONE
TL;DR: It is hypothesized that fathead minnow males use visual and urine-derived chemical cues to signal territorial status, and trimethylamine (a fishy smelling volatile amine) may be a social cue, indicating that these receptors may play role in chemical signalling of social status in fish.
Abstract: Chemical structures of several urinary reproductive pheromones in fish have been identified, and their role in the chemical communication of reproductive condition is well characterized. On the contrary, the role of chemical communication in signalling of social/territorial status in fish is poorly understood. Fathead minnows are an example of a fish species whose life history traits appear conducive to evolution of chemical communication systems that confer information about social/territorial status. Male reproduction in this species is dependent upon their ability to acquire and defend a high quality nesting territory, and to attract a female to the nest. We hypothesized that fathead minnow males use visual and urine-derived chemical cues to signal territorial status. To test this hypothesis, effects of territorial acquisition on male-specific secondary sex characteristics (SSCs) and urine volumes were first assessed. Second, frequencies of male urination in varying social contexts were examined. Finally, nuclear magnetic resonance-based metabolomics was used to identify urinary metabolites that were differentially excreted in the urine of territorial versus non-territorial males. The expression of SSCs, sperm, and urine volumes increased with territory acquisition, and either remained unchanged or decreased in non-territorial males. Frequency of male urination increased significantly in the presence of females (but not males), suggesting that females are the main target of the urinary signals. Territorial and non-territorial males had distinct urinary metabolomic profiles. An unforeseen finding was that one could discern future territorial status of males, based on their initial metabolomic profiles. Bile acids and volatile amines were identified as potential chemical signals of social status in the fathead minnow. The finding that trimethylamine (a fishy smelling volatile amine) may be a social cue is particularly interesting, because it is known to bind trace amine-associated receptors, indicating that these receptors may play role in chemical signalling of social status in fish.

33 citations


Journal ArticleDOI
TL;DR: Overall, the studies show that DES causes a range of responses in fish at water concentrations comparable to those reported in the environment and that in vivo potency of the estrogen is on par with that of the better-studied estrogenic contaminant 17α-ethinylestradiol.
Abstract: Diethylstilbestrol (DES) is a synthetic estrogen that has been banned for use in humans, but still is employed in livestock and aquaculture operations in some parts of the world. Detectable concentrations of DES in effluent and surface waters have been reported to range from slightly below 1 to greater than 10 ng/L. Little is known, however, concerning the toxicological potency of DES in fish. In this study, sexually mature fathead minnows (Pimephales promelas) of both sexes were exposed to 1, 10, or 100 ng of DES/L of water in a flow-through system. Tissue concentrations of DES and changes in a number of estrogen-responsive end points were measured in the fish at the end of a 4 d exposure and after a 4 d depuration/recovery period in clean water. Accumulation of DES was sex-dependent, with females exhibiting higher tissue residues than males after the 4 d exposure. The observed bioconcentration of DES in the fish was about 1 order of magnitude lower than that predicted on the basis of the octanol–water p...

25 citations


Journal ArticleDOI
TL;DR: Results of these analyses demonstrate the utility of the supervised assembly of a series of tissue-specific functional gene sets intended to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis for supporting biological inference from ecotoxicogenomic data and comparisons across multiple toxicogenomic experiments.
Abstract: Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the limited power of microarray-based analyses to detect low level differential expression of individual genes can hinder the ability to infer and understand chemical effects based on transcriptomic data. Here we report on the supervised assembly of a series of tissue-specific functional gene sets intended to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis. Gene sets were defined based on an updated graphical systems model of the teleost brain–pituitary–gonadal-hepatic axis. Features depicted in the model were organized into gene sets and mapped to specific probes on three zebrafish (Danio rerio) and two fathead minnow (Pimephales promelas) microarray platforms. Coverage of target genes on the microarrays ranged from 48% for the fathead minnow arrays to 88% for the most current zebrafish platform. Additionally, extended fathead minnow gene sets, incorporating first degree neighbors identified from a Spearman correlation network derived from a large compendium of fathead minnow microarray data, were constructed. Overall, only 14% of the 78 genes queried were connected in the network. Among those, over half had less than five neighbors, while two genes, cyclin b1 and zona pellucida glycoprotein 3, had over 100 first degree neighbors, and were neighbors to one another. Gene set enrichment analyses were conducted using microarray data from a zebrafish hypoxia experiment and fathead minnow time-course experiments conducted with three different endocrine-active chemicals. Results of these analyses demonstrate the utility of the approach for supporting biological inference from ecotoxicogenomic data and comparisons across multiple toxicogenomic experiments. The graphical model, gene mapping, and gene sets described are now available to the scientific community as tools to support ecotoxicogenomic research.

23 citations


Journal ArticleDOI
TL;DR: GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored.
Abstract: Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions.

14 citations