scispace - formally typeset
Search or ask a question

Showing papers by "Joan S. Brugge published in 2011"


Journal ArticleDOI
TL;DR: It is found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH).
Abstract: Jason Locasale, Lewis Cantley, Matthew Vander Heiden and colleagues show that PHGDH is amplified in some human cancers and diverts a relatively large amount of glycolytic carbon into serine and glycine biosynthesis. They further show that PHGDH-amplified cancer cells become dependent on PHGDH for their growth, suggesting that the altered metabolic flux driven by this amplification contributes to oncogenesis. Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood1,2. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.

947 citations


Journal ArticleDOI
TL;DR: Evidence is provided that ovarian cancer spheroids utilize integrin- and talin- dependent activation of myosin and traction force to promote mesothelial cells displacement from underneath a tumor cell spheroid, suggesting that ovarian tumor cell clusters gain access to the sub-mesothelial environment by exerting force.
Abstract: Dissemination of ovarian tumors involves the implantation of cancer spheroids into the mesothelial monolayer on the walls of peritoneal and pleural cavity organs. Biopsies of tumors attached to peritoneal organs show that mesothelial cells are not present under tumor masses. We have developed a live, image-based in vitro model in which interactions between tumor spheroids and mesothelial cells can be monitored in real time to provide spatial and temporal understanding of mesothelial clearance. Here we provide evidence that ovarian cancer spheroids utilize integrin – and talin - dependent activation of myosin and traction force to promote mesothelial cells displacement from underneath a tumor cell spheroid. These results suggest that ovarian tumor cell clusters gain access to the sub-mesothelial environment by exerting force on the mesothelial cells lining target organs, driving migration and clearance of the mesothelial cells.

262 citations


Journal ArticleDOI
TL;DR: A novel mechanism by which ECM attachment, growth factors, and oncogenes modulate the metabolic fate of glucose by controlling PDK4 expression and PDH flux to influence proliferation is identified.
Abstract: Loss of extracellular matrix (ECM) attachment leads to metabolic impairments that limit cellular energy production. Characterization of the metabolic alterations induced by ECM detachment revealed a dramatic decrease in uptake of glucose, glutamine, and pyruvate, and a consequent decrease in flux through glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle. However, flux through pyruvate dehydrogenase (PDH) is disproportionally decreased, concomitant with increased expression of the PDH inhibitory kinase, PDH kinase 4 (PDK4), and increased carbon secretion. Overexpression of ErbB2 maintains PDH flux by suppressing PDK4 expression in an Erk-dependent manner, and Erk signaling also regulates PDH flux in ECM-attached cells. Additionally, epidermal growth factor (EGF), a potent inducer of Erk, positively regulates PDH flux through decreased PDK4 expression. Furthermore, overexpression of PDK4 in ECM-detached cells suppresses the ErbB2-mediated rescue of ATP levels, and in attached cells, PDK4 overexpression decreases PDH flux, de novo lipogenesis, and cell proliferation. Mining of microarray data from human tumor data sets revealed that PDK4 mRNA is commonly down-regulated in tumors compared with their tissues of origin. These results identify a novel mechanism by which ECM attachment, growth factors, and oncogenes modulate the metabolic fate of glucose by controlling PDK4 expression and PDH flux to influence proliferation.

177 citations


Journal ArticleDOI
TL;DR: A previously unknown mechanism of cytokinesis failure and aneuploid cell formation that operates in human cancers is defined.
Abstract: Aneuploidy is common in human tumours and is often indicative of aggressive disease. Aneuploidy can result from cytokinesis failure, which produces binucleate cells that generate aneuploid offspring with subsequent divisions. In cancers, disruption of cytokinesis is known to result from genetic perturbations to mitotic pathways or checkpoints. Here we describe a non-genetic mechanism of cytokinesis failure that occurs as a direct result of cell-in-cell formation by entosis. Live cells internalized by entosis, which can persist through the cell cycle of host cells, disrupt formation of the contractile ring during host cell division. As a result, cytokinesis frequently fails, generating binucleate cells that produce aneuploid cell lineages. In human breast tumours, multinucleation is associated with cell-in-cell structures. These data define a previously unknown mechanism of cytokinesis failure and aneuploid cell formation that operates in human cancers.

152 citations


Journal ArticleDOI
TL;DR: A single-cell expression profiling technique is adapted to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis and finds that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1).
Abstract: Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

121 citations


Journal ArticleDOI
TL;DR: An overview of death processes that contribute to the death of matrix-detached normal cells is provided and mechanisms that confer anchorage independence are described, with a focus on ECM regulation of cell metabolism.
Abstract: Attachment to extracellular matrix (ECM) is required for the survival and proliferation of normal epithelial cells. Epithelial tumor cells, however, often acquire "anchorage independence," a property that may contribute to their ability to invade and grow in foreign environments. Although apoptosis is the most rapid and effective mechanism that causes the death of matrix-detached cells, it has become apparent that detachment from matrix alters other aspects of cell physiology prior to commitment to cell death and that some of these alterations can lead to cell death under conditions where apoptosis is suppressed. This report provides an overview of death processes that contribute to the death of matrix-detached normal cells and describes mechanisms that confer anchorage independence, with a focus on ECM regulation of cell metabolism. Loss of matrix attachment leads to metabolic stress characterized by reduced nutrient uptake, decreased ATP production, and increased levels of reactive oxygen species (ROS). The decrease in ATP levels is prevented by either constitutive activation of the PI3K/Akt pathway or exogenous antioxidants. Additionally, decreased Erk signaling in matrix-detached cells causes a disproportionate decrease in flux through pyruvate dehydrogenase (PDH), leading to decreased entry of glucose carbons into the citric acid cycle. Interestingly, forced overexpression of a PDH inhibitor suppresses de novo lipogenesis and proliferation, highlighting the importance of mitochondrial metabolism in supplying intermediates for biosynthetic processes required for proliferation. Thus, ECM attachment is a key regulator of cellular metabolism, and alterations in metabolism owing to changes or loss of ECM engagement during tumorigenesis may serve important tumor-suppressive functions.

62 citations


Journal ArticleDOI
TL;DR: It is shown that loss of ECM attachment causes down-regulation of epidermal growth factor receptor (EGFR) and β1 integrin protein and mRNA expression and that ErbB2, which is amplified in 25% of breast tumors, reverses these effects ofECM deprivation.

52 citations


Journal ArticleDOI
TL;DR: Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration and is screened for new genes that regulate cell movement in vivo.
Abstract: Dynamic assembly and disassembly of actin filaments is a major driving force for cell movements. Border cells in the Drosophila ovary provide a simple and genetically tractable model to study the mechanisms regulating cell migration. To identify new genes that regulate cell movement in vivo, we screened lethal mutations on chromosome 3R for defects in border cell migration and identified two alleles of the gene psidin (psid). In vitro, purified Psid protein bound F-actin and inhibited the interaction of tropomyosin with F-actin. In vivo, psid mutations exhibited genetic interactions with the genes encoding tropomyosin and cofilin. Border cells overexpressing Psid together with GFP-actin exhibited altered protrusion/retraction dynamics. Psid knockdown in cultured S2 cells reduced, and Psid overexpression enhanced, lamellipodial dynamics. Knockdown of the human homolog of Psid reduced the speed and directionality of migration in wounded MCF10A breast epithelial monolayers, whereas overexpression of the protein increased migration speed and altered protrusion dynamics in EGF-stimulated cells. These results indicate that Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration.

35 citations


Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Sun et al. as mentioned in this paper found that the activity of the protein tyrosine phosphatase PTPN12 is lost in a large percentage of this breast cancer subtype, offering molecular drivers and possible therapeutic targets for this heterogeneous and intractable cancer.

21 citations


Journal ArticleDOI
TL;DR: A mass spectrometry approach reveals changes to the focal adhesion proteome on myosin inhibition, providing a valuable resource for the cell adhesion field.
Abstract: The formation and maturation of focal adhesions involves significant changes in protein composition and requires acto-myosin contractility. A mass spectrometry approach reveals changes to the focal adhesion proteome on myosin inhibition, providing a valuable resource for the cell adhesion field.

12 citations