scispace - formally typeset
Search or ask a question
JournalISSN: 1465-7392

Nature Cell Biology 

Nature Portfolio
About: Nature Cell Biology is an academic journal published by Nature Portfolio. The journal publishes majorly in the area(s): Biology & Medicine. It has an ISSN identifier of 1465-7392. Over the lifetime, 5015 publications have been published receiving 900496 citations. The journal is also known as: Nature Cell Biology、Nat. Cell Biol..


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location, and it is proposed that this RNA is called “exosomal shuttle RNA” (esRNA).
Abstract: Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).

10,484 citations

Journal ArticleDOI
TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Abstract: Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.

5,314 citations

Journal ArticleDOI
TL;DR: Tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test by incorporating an mRNA for a reporter protein into them, and it is demonstrated that messages delivered by microvesicle are translated by recipient cells.
Abstract: Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test.

4,118 citations

Journal ArticleDOI
TL;DR: It is found that all five members of the microRNA-200 family were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-β or to ectopic expression of the protein tyrosine phosphatase Pez, suggesting that downregulation of themicroRNAs may be an important step in tumour progression.
Abstract: Epithelial to mesenchymal transition (EMT) facilitates tissue remodelling during embryonic development and is viewed as an essential early step in tumour metastasis. We found that all five members of the microRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) and miR-205 were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-β or to ectopic expression of the protein tyrosine phosphatase Pez. Enforced expression of the miR-200 family alone was sufficient to prevent TGF-β-induced EMT. Together, these microRNAs cooperatively regulate expression of the E-cadherin transcriptional repressors ZEB1 (also known as δEF1) and SIP1 (also known as ZEB2), factors previously implicated in EMT and tumour metastasis. Inhibition of the microRNAs was sufficient to induce EMT in a process requiring upregulation of ZEB1 and/or SIP1. Conversely, ectopic expression of these microRNAs in mesenchymal cells initiated mesenchymal to epithelial transition (MET). Consistent with their role in regulating EMT, expression of these microRNAs was found to be lost in invasive breast cancer cell lines with mesenchymal phenotype. Expression of the miR-200 family was also lost in regions of metaplastic breast cancer specimens lacking E-cadherin. These data suggest that downregulation of the microRNAs may be an important step in tumour progression. MicroRNAs are small, non-coding RNAs that modulate gene expression post-transcriptionally. In metazoa, they act predominantly to inhibit translation of their specific targets, but they also typically cause a modest reduction in the level of their target mRNAs 1,2 . Hundreds of microRNAs have been identified in vertebrates, with varying patterns of expression that range from ubiquitous to highly tissue- or developmental-stage-restricted. In some cases, an individual microRNA can act as a developmental switch by regulating a key target mRNA 3 . Speculating that switching between cell phenotypes that occurs during EMT may be specified to some extent by microRNAs, we searched for microRNAs whose expression changed during EMT. To this end, we used an in vitro model of EMT, which was generated by stable transfection of Madin Darby canine kidney (MDCK) epithelial cells with the protein tyrosine phosphatase Pez (PTP-Pez). Overexpression of PTP-Pez caused MDCK cells to undergo EMT, as indicated by loss of E-cadherin expression, gain in expression of the mesenchymal markers fibronectin, ZEB1 and SIP1, loss of cohesion, induction of cell motility and a change in cell morphology

3,640 citations

Journal ArticleDOI
TL;DR: It is shown that mouse Snail is a strong repressor of transcription of the E-cadherin gene, opening up new avenues for the design of specific anti-invasive drugs.
Abstract: The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial-mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.

3,426 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023145
2022246
2021142
2020164
2019186
2018195