scispace - formally typeset
Search or ask a question

Showing papers by "John W. Belmont published in 2008"


Journal ArticleDOI
TL;DR: It is proposed that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies.
Abstract: Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects, developmental delay, schizophrenia and related psychoses. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with microdeletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus was inserted into the 1q21.1 region during the evolution of Homo sapiens; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.

562 citations


Journal ArticleDOI
TL;DR: It is demonstrated here that mutations in the gene NOTCH1, coding for a receptor in a developmentally important signaling pathway, are found across the spectrum of LVOT defects, and it is established for the first time that AVS, COA and HLHS can share a common pathogenetic mechanism at the molecular level.
Abstract: Congenital aortic valve stenosis (AVS), coarctation of the aorta (COA) and hypoplastic left heart syndrome (HLHS) are congenital cardiovascular malformations that all involve the left ventricular outflow tract (LVOT). They are presumably caused by a similar developmental mechanism involving the developing endothelium. The exact etiology for most LVOT malformations is unknown, but a strong genetic component has been established. We demonstrate here that mutations in the gene NOTCH1, coding for a receptor in a developmentally important signaling pathway, are found across the spectrum of LVOT defects. We identify two specific mutations that reduce ligand (JAGGED1) induced NOTCH1 signaling. One of these mutations perturbs the S1 cleavage of the receptor in the Golgi. These findings suggest that the levels of NOTCH1 signaling are tightly regulated during cardiovascular development, and that relatively minor alterations may promote LVOT defects. These results also establish for the first time that AVS, COA and HLHS can share a common pathogenetic mechanism at the molecular level, explaining observations of these defects co-occurring within families.

193 citations


Journal ArticleDOI
TL;DR: It is concluded that distal deletions of chromosome 22q11.2 between L CR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known D GS/VCF deletion syndromes.
Abstract: Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ∼3 Mb deletion or a smaller, less common, ∼1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ∼3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ∼1.4 Mb or ∼2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.

183 citations


01 Jan 2008
TL;DR: In this paper, the authors used array-based comparative genomic hybridization (CGH) analysis to detect six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region.
Abstract: Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking lowcopy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.

176 citations


Journal ArticleDOI
TL;DR: In this paper, an array-comparative genomic hybridization of 14 individuals from eight families who harbor microduplications within the 22q11.2 region was used to identify the microdeletion associated with DiGeorge/velocardiofacial syndrome.

167 citations


01 Jan 2008
TL;DR: These findings highlight the unbiased ability of array-comparative genomic hybridization to identify genomic imbalances and further define the molecular etiology and clinical phenotypes seen in microduplication 22q11.2 syndrome.
Abstract: Purpose: Genomic rearrangements of chromosome 22q11.2, including the microdeletion associated with DiGeorge/velocardiofacial syndrome, are mediated by nonallelic homologous recombination between region-specific low-copy repeats. To date, only a small number of patients with 22q11.2 microduplication have been identified. Methods: We report the identification by array-comparative genomic hybridization of 14 individuals from eight families who harbor microduplications within the 22q11.2 region. Results: We have now observed a variety of microduplications, including the typical common 3-Mb microduplication, 1.5-Mb nested duplication, and smaller microduplications within and distal to the DiGeorge/velocardiofacial syndrome region, consistent with nonallelic homologous recombination using distinct low-copy repeats in the 22q11.2 DiGeorge/velocardiofacial syndrome region. These microduplications likely represent the predicted reciprocal rearrangements to the microdeletions characterized in the 22q11.2 region. The phenotypes seen in these individuals are generally mild and highly variable; familial transmission is frequently observed. Conclusions: These findings highlight the unbiased ability of array-comparative genomic hybridization to identify genomic imbalances and further define the molecular etiology and clinical phenotypes seen in microduplication 22q11.2 syndrome. Our findings also further support that the 22q11.2 region is highly dynamic with frequent rearrangements using alternative low-copy repeats as recombina

164 citations


Journal ArticleDOI
TL;DR: These studies confirm that the genetic vulnerabilities inferred from model organisms with defects in Nodal signaling are indeed analogous to humans; the molecular analysis of an entire signaling pathway is more complete and robust than that of individual genes and presages future studies by whole-genome analysis; and a functional genomics approach is essential to fully appreciate the complex genetic interactions necessary to produce these effects in humans.
Abstract: Abnormalities of embryonic patterning are hypothesized to underlie many common congenital malformations in humans including congenital heart defects (CHDs), left-right disturbances (L-R) or laterality, and holoprosencephaly (HPE). Studies in model organisms suggest that Nodal-like factors provide instructions for key aspects of body axis and germ layer patterning; however, the complex genetics of pathogenic gene variant(s) in humans are poorly understood. Here we report our studies of FOXH1, CFC1, and SMAD2 and summarize our mutational analysis of three additional components in the human NODAL-signaling pathway: NODAL, GDF1, and TDGF1. We identify functionally abnormal gene products throughout the pathway that are clearly associated with CHD, laterality, and HPE. Abnormal gene products are most commonly detected in patients within a narrow spectrum of isolated conotruncal heart defects (minimum 5%–10% of subjects), and far less commonly in isolated laterality or HPE patients (∼1% for each). The difference in the mutation incidence between these groups is highly significant. We show that apparent gene dosage discrepancies between humans and model organisms can be reconciled by considering a broader combination of sequence variants. Our studies confirm that (1) the genetic vulnerabilities inferred from model organisms with defects in Nodal signaling are indeed analogous to humans; (2) the molecular analysis of an entire signaling pathway is more complete and robust than that of individual genes and presages future studies by whole-genome analysis; and (3) a functional genomics approach is essential to fully appreciate the complex genetic interactions necessary to produce these effects in humans.

151 citations


Journal ArticleDOI
TL;DR: High-throughput single-nucleotide polymorphism (SNP) genotyping is being widely applied in genome-wide association studies (GWASs) with recent successes in identification of common variants that confer risk for common adult diseases.
Abstract: Advances in the fabrication of DNA microarrays as well as transformations in detection chemistries have vastly increased the throughput for genotyping, DNA sequencing, and array-based copy number analysis (ABCNA). Rapid changes in technology are not only affecting research but also revolutionizing DNA diagnostics. Here we focus on the application of high-throughput ABCNA and genotyping. Targeted and genome-wide ABCNA has led to the discovery of extensive DNA copy number variation in the population and the delineation of many previously unrecognized submicroscopic chromosomal aberrations (genomic disorders). High-throughput single-nucleotide polymorphism (SNP) genotyping is being widely applied in genome-wide association studies (GWASs) with recent successes in identification of common variants that confer risk for common adult diseases. Future applications of high-throughput genotyping and array-based DNA sequencing technology will undoubtedly involve research and diagnostic analyses of rare mutations and perhaps ultimately enable full individual genome sequencing.

132 citations


Journal ArticleDOI
05 Dec 2008-PLOS ONE
TL;DR: A subset of East Asian substructure ancestry informative markers (EASTASAIMS) is identified that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies.
Abstract: Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies.

105 citations


Journal ArticleDOI
16 Oct 2008-Oncogene
TL;DR: The findings demonstrate that lipocalin 2 has at least two functions related to tumorigenesis, one involving apoptosis induction of normal hematopoietic cells and the other being tissue invasion by leukemia cells.
Abstract: Our previous studies indicate that reduction of lipocalin 2 (mouse 24p3) expression by either anti-sense or siRNA approaches strongly reduces the overgrowth of BCR-ABL+ mouse myeloid 32D in marrow and spleen of NOD/SCID mice. In this study, we used the mouse bone marrow transplant model to further explore the role of 24p3 in BCR-ABL-induced leukemia. Consistent with our previous findings, when using non-irradiated mice as recipient, donor marrow cells expressing BCR-ABL but lacking 24p3 did not cause leukemia or any disease after 75 days, whereas all mice receiving wild type BCR-ABL donor cells died with CML-like disease. An agar clone of the BCR-ABL+ human CML cell line K562 (C5) that secretes relatively high levels of lipocalin 2 (human NGAL) induced suppression of hematopoiesis in spleen and marrow of mice, leading to early death in contrast to parental K562 or K562 clone (C6) expressing low amounts of NGAL. Compared with K562 cells, overexpressing NGAL in K562 led to a higher apoptosis rate and an atrophy phenotype in the spleen of the inoculated mice. Plasma from both leukemic mice and CML patients showed elevated lipocalin 2 levels compared with healthy individuals. Moreover, we found that a primary stable cell line from wild-type mouse marrow cells expressing BCR-ABL caused solid tumors in nude mice whereas a similar BCR-ABL+ cell line from 24p3 null mice did not. These findings demonstrate that lipocalin 2 has at least two functions related to tumorigenesis, one involving apoptosis induction of normal hematopoietic cells and the other being tissue invasion by leukemia cells.

91 citations


Journal ArticleDOI
TL;DR: The findings demonstrate a novel genomic disorder characterised by deletion of BMP2 with variable cognitive deficits and dysmorphic features and show that individuals bearing microdeletions in 20p12.3 often present with WPW syndrome.
Abstract: Background: Wolff-Parkinson-White syndrome (WPW) is a bypass reentrant tachycardia that results from an abnormal connection between the atria and ventricles. Mutations in PRKAG2 have been described in patients with familial WPW syndrome and hypertrophic cardiomyopathy. Based on the role of bone morphogenetic protein (BMP) signaling in the development of annulus fibrosus in mice, it has been proposed that BMP signaling through the type 1a receptor and other downstream components may play a role in preexcitation. Methods and Results: Using the array comparative genomic hybridization (CGH), we identified five individuals with non-recurrent deletions of 20p12.3. Four of these individuals had WPW syndrome with variable dysmorphisms and neurocognitive delay. With the exception of one maternally inherited deletion, all occurred de novo, and the smallest of these, harbored a single gene, BMP2. In two individuals with additional features of Alagille syndrome, deletion of both JAG1 and BMP2 were identified. Deletion of this region has not been described as a copy-number variant in the Database of Genomic Variants and has not been identified in 13,321 individuals from other cohort examined by array CGH in our laboratory. Conclusions: Our findings demonstrate a novel genomic disorder characterized by deletion of BMP2 with variable cognitive deficits and dysmorphic features and show that individuals bearing microdeletions in 20p12.3 often present with WPW syndrome.

Journal ArticleDOI
TL;DR: It is predicted that a wider application of the array‐CGH technology will significantly increase the detection rate of low‐level mosaicism and will subsequently improve the ability to provide a diagnosis for patients with dysmorphic features, congenital anomalies, and developmental delay.
Abstract: Trisomy 14 mosaicism is a rare cytogenetic abnormality with a defined and recognizable clinical phenotype. We present a detailed clinical history and physical findings of five patients with low-level mosaicism of trisomy 14 detected by array-based comparative genomic hybridization (array-CGH) analysis or by routine chromosome analysis. These patients exhibited growth and developmental delays with variable severity, congenital anomalies, pigmentary skin lesions, and dysmorphic features. The phenotype of our patients was compared with previously described cases. This report suggests that trisomy 14 mosaicism may be more common than has been previously appreciated and also illustrates the important application of array-CGH to detect low-level mosaic chromosome abnormalities. We predict that a wider application of the array-CGH technology will significantly increase the detection rate of low-level mosaicism and will subsequently improve our ability to provide a diagnosis for patients with dysmorphic features, congenital anomalies, and developmental delay.

Journal ArticleDOI
TL;DR: In this article, the effect of Amerindian ancestry in systemic lupus erythematosus (SLE) was examined in an admixed population in Argentina.
Abstract: Previous studies have demonstrated that in admixed populations, West African ancestry is associated with an increased prevalence of systemic lupus erythematosus (SLE). In the current study, the effect of Amerindian ancestry in SLE was examined in an admixed population in Argentina. The Argentine population is predominantly European with approximately 20% Amerindian admixture, and a very small (<2%) contribution from West Africa. The results indicate that Amerindian admixture in this population is associated with a substantial increase in SLE susceptibility risk (Odds Ratio=7.94, P=0.00006). This difference was not due to known demographic factors, including site of collection, age and gender. In addition, there were trends towards significance for Amerindian ancestry influencing renal disease, age of onset and anti-SSA antibodies. These studies suggest that populations with Amerindian admixture, like those with West African admixture, should be considered in future studies to identify additional allelic variants that predispose to SLE.

Journal ArticleDOI
TL;DR: In vitro interactions of ZIC3 with GLI3 and the effect of Zic3 mutations identified in patients with either heterotaxy or isolated cardiovascular malformations are investigated.
Abstract: ZIC3, a GLI superfamily transcription factor, is involved in establishing normal embryonic left–right patterning. Multiple abnormalities in the central nervous system (CNS) and axial skeleton have also been observed in mice bearing a Zic3 null allele, mice with a Zic3 overexpression allele, and the majority of patients carrying ZIC3 mutations. Previous studies indicate that ZIC3 protein can bind to the GLI consensus binding site (GLIBS) and physically interact with GLI3, a transcription factor involved in multiple aspects of neural and skeletal development. We investigated in vitro interactions of ZIC3 with GLI3 and the effect of ZIC3 mutations identified in patients with either heterotaxy or isolated cardiovascular malformations. Electrophoresis mobility shift assay (EMSA) revealed that all five intact zinc finger (ZF) domains were necessary for binding of ZIC3 to GLIBS. Inclusion of GLIBS upstream of a basal TK promoter had no effect on the activation of the promoter by ZIC3 alone, but it enhanced the synergistic activation of ZIC3 and GLI3. Wild-type (WT) ZIC3 showed specific binding to GLI3 in GST-pull-down assays. Nonsense and frameshift ZIC3 mutants lacking one or more of the zinc finger domains did not physically interact with GST-GLI3; however, two missense mutants c.1213A>G (p.K405E, fifth ZF domain), and c.649C>G (p.P217A, conserved N-terminal domain) retained binding. Luciferase reporter assays indicated that both p.P217A and p.K405E mutants also retained coactivation with GLI3 of reporter gene expression activity, while all the GLI3-nonbinding ZIC3 mutants lacked this activity. Interestingly, no CNS or skeletal abnormalities were observed in patients bearing the p.P217A or p.K405E mutations. Hum Mutat 29(1), 99–105, 2008. Published 2007 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: Most evidence points to extensive etiologic heterogeneity and a re‐evaluation of simple multifactorial models is required, but the basis for the large majority of CHD, especially isolated defects, remains obscure.
Abstract: Congenital heart defects (CHD) constitute the single most common anatomic class of birth defects and are a major cause of infant mortality. Correlation of normal and pathological embryology/anatomy has led to the formulation of mechanistic models, but there is limited understanding of the genetic basis for the inferred embryological processes. Most evidence points to extensive etiologic heterogeneity and a re-evaluation of simple multifactorial models is required. The recent identification of several genes responsible for congenital heart defects in the context of more complex clinical disorders provides significant entry points for the genetic analysis of human heart development. The association of aneusomies (particularly microdeletion syndromes) with specific cardiac lesions provides further strong support for mechanistic classification. Studies in the mouse are laying the groundwork for a comprehensive genetic model of cardiac organogenesis. Nevertheless, the basis for the large majority of CHD, especially isolated defects, remains obscure. Dissection of the genetic components of CHD is one of the greatest challenges in medical genetics for the coming decades.