scispace - formally typeset
Search or ask a question

Showing papers by "Katharine J. Schlesinger published in 2014"


Journal ArticleDOI
TL;DR: The 10th public data release (DR10) from the Sloan Digital Sky Survey (SDSS-III) was released in 2013 as mentioned in this paper, which includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopy data from Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July.
Abstract: The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300 fiber spectrograph covering 1.514-1.696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2.

1,188 citations


Journal ArticleDOI
TL;DR: In this paper, the first year of the SDSS-III APOGEE experiment, the authors presented Galactic mean metallicity maps derived from the first decade of the experiment.
Abstract: We present Galactic mean metallicity maps derived from the first year of the SDSS-III APOGEE experiment. Mean abundances in different zones of projected Galactocentric radius (0 6 kpc, the gradient flattens as one moves off the plane, and is flatter at all heights for high-[α/M] stars than for low-[α/M] stars. Alternatively, these gradients can be described as vertical gradients that flatten at larger Galactocentric radius; these vertical gradients are similar for both low- and high-[α/M] populations. Stars with higher [α/M] appear to havemore » a flatter radial gradient than stars with lower [α/M]. This could suggest that the metallicity gradient has grown steeper with time or, alternatively, that gradients are washed out over time by migration of stars.« less

177 citations


Journal ArticleDOI
TL;DR: In this article, an abundance analysis of 96 horizontal branch (HB) stars in NGC 2808, a globular cluster exhibiting a complex multiple stellar population p attern, is presented.
Abstract: We present an abundance analysis of 96 horizontal branch (HB) stars in NGC 2808, a globular cluster exhibiting a complex multiple stellar population p attern. These stars are distributed in different portions of the HB and cover a wide range of temperature. By studying the chemical abundances of this sample, we explore the connection between HB morphology and the chemical enrichment history of multiple stellar populatio ns. For stars lying on the red HB, we use GIRAFFE and UVES spectra to determine Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, and Nd abundances. For colder, blue HB stars, we derive abundances for Na, primarily from GIRAFFE spectra. We were also able to measure direct NLTE He abundances for a subset of these blue HB stars with temperature higher than∼9000 K. Our results show that: (i) HB stars in NGC 2808 show different content in Na depending on their position in the color-magnitude diagram, with blue HB stars having higher Na than red HB stars; (ii) the red HB is not consistent with an uniform chemical abundance, with slightly warmer stars exhibiting a statistically significant higher Na content; and (iii) our subsample of blue HB stars with He abundances shows evidence of enhancement with respect to the predicted primordial He ‐ ‐ ‐ ‐

174 citations


Journal ArticleDOI
TL;DR: In this article, the Stromgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood.
Abstract: Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. The ongoing Stromgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood. Here we present the first results from a stripe centered at a Galactic longitude of 74 degrees and covering latitude from about 8 degrees to 20 degrees, which includes almost 1000 K giants with seismic information and the benchmark open cluster NGC 6819. We describe the coupling of classical and seismic parameters, the accuracy as well as the caveats of the derived effective temperatures, metallicities, distances, surface gravities, masses, and radii. Confidence in the achieved precision is corroborated by the detection of the first and secondary clumps in a population of field stars with a ratio of 2 to 1 and by the negligible scatter in the seismic distances among NGC 6819 member stars. An assessment of the reliability of stellar parameters in the Kepler Input Catalog is also performed, and the impact of our results for population studies in the Milky Way is discussed, along with the importance of an all-sky Stromgren survey. (Less)

142 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun.
Abstract: Aims. We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (ROSS). Methods. Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each obserxrci spectrum best. We used an optimization algorithm and evaluate model fluxes by means of inter-polation in a precomputed grid, In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP). except for stars with log g (cgs units) lower than 2.5. Results. An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our rnetallicity estimates are, significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallieities, but does not significantly distort the shape of the metallicity distribution at low rnetallicity. We obtain a halo metathcity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way. (Less)

87 citations


Journal ArticleDOI
TL;DR: Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, this article determined the vertical metallicity gradient in the Milky Way's disk and examined how this gradient varies for different [α/Fe] subsamples.
Abstract: Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined the vertical metallicity gradient in the Milky Way's disk and examined how this gradient varies for different [α/Fe] subsamples. Our sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. It also covers a significant disk volume, between ∼0.3 and 1.6 kpc from the Galactic plane, and allows us to examine the disk in situ, whereas previous analyses were more limited in scope. Furthermore, this work does not presuppose a disk structure, whether composed of a single complex population or distinct thin and thick disk components. We employ the SEGUE Stellar Parameter Pipeline to obtain estimates of stellar parameters, [Fe/H], and [α/Fe] and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on SEGUE's target-selection algorithm, we adjust each subsample to determine an unbiased picture of disk chemistry; consequently, each individual star represents the properties of many. The metallicity gradient is –0.243{sub −0.053}{sup +0.039} dex kpc{sup –1} for the entire sample, which we compare to various literature results. This gradient stems from the different [α/Fe] populations inhabiting different ranges of height above the Galactic plane. Each [α/Fe] subsample showsmore » little change in median [Fe/H] with height. If we associate [α/Fe] with age, the negligible gradients of our [α/Fe] subsamples suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star formation processes and evolution.« less

35 citations


Journal ArticleDOI
TL;DR: Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, this paper determined a vertical metallicity gradient over a large volume of the Milky Way's disk and examined how this gradient varies for different [a/Fe] subsamples.
Abstract: Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Way's disk, and examined how this gradient varies for different [a/Fe] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the survey's consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.

26 citations



Journal ArticleDOI
TL;DR: In this paper, the authors used an automated method to determine the set of parameters of a model atmosphere that reproduces each observed spectrum best, based on an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid.
Abstract: We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way.

2 citations


Journal ArticleDOI
TL;DR: The ongoing Stroemgren survey for Asteroseismology and Galactic Archaeology (SAGA) as discussed by the authors provides an unprecedented opportunity to constrain theories of the evolution of the Milky Way disc.
Abstract: Asteroseismology has the capability of delivering stellar properties which would otherwise be inaccessible, such as radii, masses and thus ages of stars. When this information is coupled with classical determinations of stellar parameters, such as metallicities, effective temperatures and angular diameters, powerful new diagnostics for stellar and Galactic studies can be obtained. The ongoing Stroemgren survey for Asteroseismology and Galactic Archaeology (SAGA) is pursuing such a goal, by determining photometric stellar parameters for stars with seismic oscillations measured by the Kepler satellite. As the survey continues and expands in sample size, SAGA will provide an unprecedented opportunity to constrain theories of the evolution of the Milky Way disc.