scispace - formally typeset
Search or ask a question

Showing papers by "Keiran Raine published in 2007"


Journal ArticleDOI
08 Mar 2007-Nature
TL;DR: More than 1,000 somatic mutations found in 274 megabases of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers reveal the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Abstract: Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.

2,732 citations


Journal ArticleDOI
TL;DR: This work identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype and suggests at least partial redundancy of NMD pathways.
Abstract: Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.

249 citations


Journal ArticleDOI
TL;DR: The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.
Abstract: We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.

197 citations


Journal ArticleDOI
TL;DR: This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase, and it suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease.
Abstract: We have identified one frameshift mutation, one splice-site mutation, and two missense mutations in highly conserved residues in ZDHHC9 at Xq26.1 in 4 of 250 families with X-linked mental retardation (XLMR). In three of the families, the mental retardation phenotype is associated with a Marfanoid habitus, although none of the affected individuals meets the Ghent criteria for Marfan syndrome. ZDHHC9 is a palmitoyltransferase that catalyzes the posttranslational modification of NRAS and HRAS. The degree of palmitoylation determines the temporal and spatial location of these proteins in the plasma membrane and Golgi complex. The finding of mutations in ZDHHC9 suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease. This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase. Furthermore, now that the first palmitoyltransferase that causes mental retardation has been identified, defects in other palmitoylation transferases become good candidates for causing other mental retardation syndromes.

169 citations


Journal ArticleDOI
TL;DR: BRWD3 is a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.
Abstract: In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.

77 citations


Journal ArticleDOI
TL;DR: This work has developed a mutation detection algorithm, AutoCSA, specifically optimized for the high throughput screening of cancer samples, specifically designed for the large-scale DNA sequencing screens for somatic variants in human cancers.
Abstract: The undertaking of large-scale DNA sequencing screens for somatic variants in human cancers requires accurate and rapid processing of traces for variants. Due to their often aneuploid nature and admixed normal tissue, heterozygous variants found in primary cancers are often subtle and difficult to detect. To address these issues, we have developed a mutation detection algorithm, AutoCSA, specifically optimized for the high throughput screening of cancer samples. Availability: http://www.sanger.ac.uk/genetics/CGP/Software/AutoCSA. Contact: [email protected]

15 citations