scispace - formally typeset
Search or ask a question

Showing papers by "Liam Cunningham published in 2011"


20 May 2011
TL;DR: In this article, the conceptual design of a third generation gravitational wave observatory named the Einstein Telescope (ET) has been described with the support of the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n 211743.
Abstract: This document describes the Conceptual Design of a third generation gravitational wave observatory named Einstein Telescope (“ET”). The design of this new research infrastructure has been realised with the support of the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 211743. In this document are described the fundamental design options, the site requirements, the main technological solutions, a rough evaluation of the costs and a schematic time plan.

192 citations



Journal ArticleDOI
TL;DR: In this paper, a low-latency analysis pipeline was used to identify and localize GW event candidates and to request images of targeted sky locations, where a catalog of nearby galaxies and Milky Way globular clusters were used to select the most promising sky positions to be imaged.
Abstract: Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.

104 citations


Journal ArticleDOI
TL;DR: In this article, direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run were obtained using three independent methods.
Abstract: We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\ee{-24}$ and $2.2\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\ee{-24}$, with 95% degree of belief. These limits are below the indirect {\it spin-down limit} of $3.3\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.

78 citations


Journal ArticleDOI
J. Abadie, B. P. Abbott, R. Abbott, Matthew Abernathy  +718 moreInstitutions (1)
TL;DR: In this paper, the authors present a survey of the state-of-the-art work in this area, including the following: A.A. Adhikari, P.B. Abadie, B.Babak, A.C. Anderson, W.M. Brandes, M.Barriga, E.C., A.B., C.C, C.Chaibi, O.Chakrabarty, O'Brien, O.'Brien, S.Capellaro, O 'Brien, T.
Abstract: J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen, G. S. Allen, E. Amador Ceron, R. S. Amin, S. B. Anderson, W.G. Anderson, F. Antonucci, M.A. Arain, M. C. Araya, M. Aronsson, Y. Aso, S.M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, S. Babak, P. Baker, G. Ballardin, T. Ballinger, S. Ballmer, D. Barker, S. Barnum, F. Barone, B. Barr, P. Barriga, L. Barsotti, M. Barsuglia, M.A. Barton, I. Bartos, R. Bassiri, M. Bastarrika, J. Bauchrowitz, Th. S. Bauer, B. Behnke, M.G. Beker, A. Belletoile, M. Benacquista, A. Bertolini, J. Betzwieser, N. Beveridge, P. T. Beyersdorf, I. A. Bilenko, G. Billingsley, J. Birch, S. Birindelli, R. Biswas, M. Bitossi, M.A. Bizouard, E. Black, J. K. Blackburn, L. Blackburn, D. Blair, B. Bland, M. Blom, C. Boccara, O. Bock, T. P. Bodiya, R. Bondarescu, F. Bondu, L. Bonelli, R. Bonnand, R. Bork, M. Born, V. Boschi, S. Bose, L. Bosi, B. Bouhou, M. Boyle, S. Braccini, C. Bradaschia, P. R. Brady, V. B. Braginsky, J. E. Brau, J. Breyer, D.O. Bridges, A. Brillet, M. Brinkmann, V. Brisson, M. Britzger, A. F. Brooks, D. A. Brown, R. Budzynski, T. Bulik, H. J. Bulten, A. Buonanno, J. Burguet–Castell, O. Burmeister, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, J. Cain, E. Calloni, J. B. Camp, E. Campagna, P. Campsie, J. Cannizzo, K. Cannon, B. Canuel, J. Cao, C. Capano, F. Carbognani, S. Caride, S. Caudill, M. Cavaglia, F. Cavalier, R. Cavalieri, G. Cella, C. Cepeda, E. Cesarini, O. Chaibi, T. Chalermsongsak, E. Chalkley, P. Charlton, E. Chassande-Mottin, S. Chelkowski, Y. Chen, A. Chincarini, N. Christensen, S. S. Y. Chua, C. T.Y. Chung, D. Clark, J. Clark, J. H. Clayton, F. Cleva, E. Coccia, C. N. Colacino, J. Colas, A. Colla, M. Colombini, R. Conte, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, C. A. Costa, J.-P. Coulon, D.M. Coward, D. C. Coyne, J. D. E. Creighton, T.D. Creighton, A.M. Cruise, R.M. Culter, A. Cumming, L. Cunningham, E. Cuoco, K. Dahl, S. L. Danilishin, R. Dannenberg, S. D’Antonio, K. Danzmann, K. Das, V. Dattilo, B. Daudert, M. Davier, G. Davies, A. Davis, E. J. Daw, R. Day, T. Dayanga, R. De Rosa, D. DeBra, G. Debreczeni, J. Degallaix, M. del Prete, V. Dergachev, R. DeRosa, R. DeSalvo, P. Devanka, S. Dhurandhar, L. Di Fiore, A. Di Lieto, I. Di Palma, M. Di Paolo Emilio, A. Di Virgilio, M. Diaz, A. Dietz, F. Donovan, K. L. Dooley, E. E. Doomes, S. Dorsher, E. S. D. Douglas, M. Drago, R.W. P. Drever, J. C. Driggers, J. Dueck, J.-C. Dumas, S. Dwyer, T. Eberle, M. Edgar, M. Edwards, A. Effler, P. Ehrens, G. Ely, R. Engel, T. Etzel, M. Evans, T. Evans, V. Fafone, S. Fairhurst, Y. Fan, B. F. Farr, D. Fazi, H. Fehrmann, D. Feldbaum, I. Ferrante, F. Fidecaro, L. S. Finn, I. Fiori, R. Flaminio, M. Flanigan, K. Flasch, S. Foley, C. Forrest, E. Forsi, L. A. Forte, N. Fotopoulos, J.-D. Fournier, J. Franc, S. Frasca, F. Frasconi, M. Frede, M. Frei, Z. Frei, A. Freise, R. Frey, T. T. Fricke, D. Friedrich, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, M. Galimberti, L. Gammaitoni, J. A. Garofoli, F. Garufi, M. E. Gaspar, G. Gemme, E. Genin, A. Gennai, I. Gholami, S. Ghosh, J. A. Giaime, S. Giampanis, K. D. Giardina, A. Giazotto, C. Gill, E. Goetz, L.M. Goggin, G. Gonzalez, M. L. Gorodetsky, S. Gosler, R. Gouaty, C. Graef, M. Granata, A. Grant, S. Gras, C. Gray, R. J. S. Greenhalgh, A.M. Gretarsson, C. Greverie, R. Grosso, H. Grote, S. Grunewald, G.M. Guidi, E. K. Gustafson, R. Gustafson, B. Hage, P. Hall, J.M. Hallam, D. Hammer, G. Hammond, J. Hanks, C. Hanna, J. Hanson, J. Harms, G.M. Harry, I.W. Harry, E. D. Harstad, K. Haughian, K. Hayama, J.-F. Hayau, T. Hayler, J. Heefner, H. Heitmann, P. Hello, I. S. Heng, A.W. Heptonstall, M. Hewitson, S. Hild, E. Hirose, D. Hoak, K. A. Hodge, K. Holt, D. J. Hosken, J. Hough, E. J. Howell, D. Hoyland, D. Huet, B. Hughey, S. Husa, S. H. Huttner, T. Huynh–Dinh, D. R. Ingram, R. Inta, T. Isogai, A. Ivanov, P. Jaranowski, W.W. Johnson, D. I. Jones, G. Jones, R. Jones, L. Ju, P. Kalmus, V. Kalogera, S. Kandhasamy, J. B. Kanner, E. Katsavounidis, K. Kawabe, S. Kawamura, F. Kawazoe, W. Kells, D.G. Keppel, A. Khalaidovski, F. Y. Khalili, E. A. Khazanov, H. Kim, P. J. King, D. L. Kinzel, J. S. Kissel, S. Klimenko, V. Kondrashov, R. Kopparapu, S. Koranda, I. Kowalska, D. Kozak, T. Krause, V. Kringel, S. Krishnamurthy, B. Krishnan, A. Krolak, G. Kuehn, J. Kullman, R. Kumar, P. Kwee, M. Landry, M. Lang, B. Lantz, N. Lastzka, A. Lazzarini, P. Leaci, J. Leong, I. Leonor, N. Leroy, N. Letendre, J. Li, T. G. F. Li, N. Liguori, H. Lin, P. E. Lindquist, N. A. Lockerbie, D. Lodhia, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, P. Lu, J. Luan, M. Lubinski, A. Lucianetti, H. Luck, A.D. Lundgren, B. Machenschalk, M. MacInnis, M. Mageswaran, K. Mailand, E. Majorana, C. Mak, I. Maksimovic, N. Man, I. Mandel, V. Mandic, M. Mantovani, F. Marchesoni, F. Marion, S. Marka, Z. Marka, E. Maros, J. Marque, F. Martelli, I.W. Martin, R.M. Martin, J. N. Marx, K. Mason, A. Masserot, F. Matichard, L. Matone, R. A. Matzner, N. Mavalvala, R. McCarthy, D. E. McClelland, S. C. McGuire, G. McIntyre, G. McIvor, D. J. A. McKechan, G. Meadors, M. Mehmet, T. Meier, A. Melatos, A. C. Melissinos, G. Mendell, D. F. Menendez, R. A. Mercer, L. Merill, S. Meshkov, C. Messenger, M. S. Meyer, H. Miao, C. Michel, L. Milano, J. Miller, Y. Minenkov, Y. Mino, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, B. Moe, M. Mohan, S. D. Mohanty, S. R. P. Mohapatra, D. Moraru, PHYSICAL REVIEW D 85, 089904(E) (2012)

63 citations


Posted Content
Bangalore Suryanarayana Sathyaprakash, Matthew Abernathy, Fausto Acernese, Pau Amaro-Seoane, N Andersson, K. G. Arun, Fabrizio Barone, B. Barr, M. Barsuglia, M. G. Beker, N. Beveridge, S. Birindelli, Suvadeep Bose, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik, Enrico Calloni, G. Cella, E. Chassande-Mottin, Simon Chelkowski, Andrea Chincarini, John A. Clark, E. Coccia, C. N. Colacino, J. Colas, A. Cumming, Liam Cunningham, E. Cuoco, S. L. Danilishin, Karsten Danzmann, Thomas Dent, M. Doets, V. Fafone, Paolo Falferi, R. Flaminio, J. Franc, F. Frasconi, Andreas Freise, D. Friedrich, P. Fulda, J. R. Gair, G. Gemme, E. Genin, A. Gennai, A. Giazotto, Kostas Glampedakis, Christian Gräf, M. Granata, Hartmut Grote, G. M. Guidi, A. Gurkovsky, G. D. Hammond, Mark Hannam, Jan Harms, D. Heinert, Martin Hendry, Ik Siong Heng, Eric Hennes, Stefan Hild, J. H. Hough, Sascha Husa, S. H. Huttner, Gareth Jones, F. Y. Khalili, K. Kokeyama, Kostas D. Kokkotas, Badri Krishnan, Tenglin Li, M. Lorenzini, Harald Lück, Ettore Majorana, Ilya Mandel, Vuk Mandic, M. Mantovani, I. W. Martin, C. Michel, Y. Minenkov, N. Morgado, Simona Mosca, B. Mours, H. Müller-Ebhardt, P. G. Murray, Ronny Nawrodt, Jenny Nelson, Richard O'Shaughnessy, Christian D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, Wolfango Plastino, Rosa Poggiani, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling, István Rácz, P. Rapagnani, J. F. Read, T. Regimbau, H. Rehbein, Stuart Reid, Luciano Rezzolla, F. Ricci, F. Richard, A. Rocchi, Sheila Rowan, Albrecht Rüdiger, Lucía Santamaría, B. Sassolas, Roman Schnabel, C. Schwarz, Paul Seidel, A. M. Sintes, Kentaro Somiya, F. C. Speirits, K. A. Strain, S. E. Strigin, P. J. Sutton, S. P. Tarabrin, A. Thüring, J. F. J. van den Brand, M. van Veggel, C. Van Den Broeck, Alberto Vecchio, John Veitch, F. Vetrano, A. Viceré, Sergey P. Vyatchanin, Benno Willke, Graham Woan, Kazuhiro Yamamoto 
TL;DR: Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector as discussed by the authors.
Abstract: Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.

22 citations


01 Mar 2011
TL;DR: A.J. Abadie, B. Abbott, R. Adhikari, P. Allen, E. Barriga, L. Barsotti, M. Bock, T. Blair, D. Donovan, K. Frei, A. Freisinger, C. Freise, S. Fricke, J. Friedrich, P Fritschel, V. Fairhurst, Y.

9 citations


Bangalore Suryanarayana Sathyaprakash, M. R. Abernathy1, Fausto Acernese2, P. Amaro-Seoane3, P. Amaro-Seoane4, Nils Andersson5, K. Arun6, Fabrizio Barone2, B. Barr1, M. Barsuglia7, M. G. Beker, N. Beveridge1, S. Birindelli, Suvadeep Bose8, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik9, Enrico Calloni10, G. Cella, E. Chassande-Mottin7, Simon Chelkowski11, Andrea Chincarini, John A. Clark12, E. Coccia13, C. N. Colacino, J. Colas, A. Cumming1, Liam Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann15, R. De Salvo16, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio, M. Doets17, V. Fafone13, Paolo Falferi18, R. Flaminio, J. Franc, F. Frasconi, Andreas Freise11, D. Friedrich15, Paul Fulda11, Jonathan R. Gair19, G. Gemme, E. Genin, A. Gennai11, A. Giazotto, Kostas Glampedakis20, C. Gräf15, M. Granata7, Hartmut Grote15, G. M. Guidi21, A. Gurkovsky, G. D. Hammond1, Mark Hannam12, Jan Harms16, D. Heinert22, Martin Hendry1, Ik Siong Heng1, Eric Hennes, Stefan Hild1, J. H. Hough, Sascha Husa23, S. H. Huttner1, Gareth Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan15, Tenglin Li, M. Lorenzini, Harald Lück15, Ettore Majorana, Ilya Mandel11, Ilya Mandel24, Vuk Mandic25, M. Mantovani, I. W. Martin1, C. Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, H. Müller-Ebhardt15, P. G. Murray1, Ronny Nawrodt1, Ronny Nawrodt22, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott16, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, D. Passuello, L. Pinard, Wolfango Plastino29, Rosa Poggiani28, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling17, István Rácz, P. Rapagnani30, Jocelyn Read31, T. Regimbau, H. Rehbein15, Stuart Reid1, Luciano Rezzolla4, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger15, Lucía Santamaría16, B. Sassolas, Roman Schnabel15, C. Schwarz22, Paul Seidel22, A. M. Sintes32, Kentaro Somiya16, F. C. Speirits1, K. Speirits1, K. A. Strain1, S. E. Strigin14, Patrick J. Sutton12, S. P. Tarabrin15, A. Thüring15, J. F. J. van den Brand17, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, Sergey P. Vyatchanin14, B. Vyatchanin1, Graham Woan1, Kazuhiro Yamamoto 
05 Aug 2011
TL;DR: The advanced interferometer network will herald a new era in observational astronomy as mentioned in this paper, and there is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude.
Abstract: The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz to 10 kHz, with sensitivity a factor 10 better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.

8 citations


Journal Article
TL;DR: In this article, the authors present a survey of the state-of-the-art work in this area: A.A. Adhikari, P. A. Ajith, B. Barriga, S.A., A.B. Bennett, J.C. Dooley, E.M. Brandt, J-C. Hohenberger, M.E.Charlton, N.C., C.Chua, C.C, T.Chung, D.Chakrabarty, D-C., D.
Abstract: J. Abadie, B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, E. Amador Ceron, R. S. Amin, S. B. Anderson, W.G. Anderson, M.A. Arain, M. Araya, Y. Aso, S. Aston, P. Aufmuth, C. Aulbert, S. Babak, P. Baker, S. Ballmer, D. Barker, B. Barr, P. Barriga, L. Barsotti, M.A. Barton, I. Bartos, R. Bassiri, M. Bastarrika, B. Behnke, M. Benacquista, M. F. Bennett, J. Betzwieser, P. T. Beyersdorf, I. A. Bilenko, G. Billingsley, R. Biswas, E. Black, J. K. Blackburn, L. Blackburn, D. Blair, B. Bland, O. Bock, T. P. Bodiya, R. Bondarescu, R. Bork, M. Born, S. Bose, P. R. Brady, V. B. Braginsky, J. E. Brau, J. Breyer, D.O. Bridges, M. Brinkmann, M. Britzger, A. F. Brooks, D.A. Brown, A. Bullington, A. Buonanno, O. Burmeister, R. L. Byer, L. Cadonati, J. Cain, J. B. Camp, J. Cannizzo, K. C. Cannon, J. Cao, C. Capano, L. Cardenas, S. Caudill, M. Cavaglià, C. Cepeda, T. Chalermsongsak, E. Chalkley, P. Charlton, S. Chatterji, S. Chelkowski, Y. Chen, N. Christensen, S. S. Y. Chua, C. T. Y. Chung, D. Clark, J. Clark, J. H. Clayton, R. Conte, D. Cook, T. R. C. Corbitt, N. Cornish, D. Coward, D. C. Coyne, J. D. E. Creighton, T. D. Creighton, A.M. Cruise, R.M. Culter, A. Cumming, L. Cunningham, K. Dahl, S. L. Danilishin, K. Danzmann, B. Daudert, G. Davies, E. J. Daw, T. Dayanga, D. DeBra, J. Degallaix, V. Dergachev, R. DeSalvo, S. Dhurandhar, M. Dı́az, F. Donovan, K. L. Dooley, E. E. Doomes, R.W. P. Drever, J. Driggers, J. Dueck, I. Duke, J.-C. Dumas, S. Dwyer, M. Edgar, M. Edwards, A. Effler, P. Ehrens, T. Etzel, M. Evans, T. Evans, S. Fairhurst, Y. Faltas, Y. Fan, D. Fazi, H. Fehrmann, L. S. Finn, K. Flasch, S. Foley, C. Forrest, N. Fotopoulos, M. Frede, M. Frei, Z. Frei, A. Freise, R. Frey, T. T. Fricke, D. Friedrich, P. Fritschel, V. V. Frolov, P. Fulda, M. Fyffe, J. A. Garofoli, S. Ghosh, J. A. Giaime, S. Giampanis, K.D. Giardina, E. Goetz, L.M. Goggin, G. González, S. Goßler, A. Grant, S. Gras, C. Gray, R. J. S. Greenhalgh, A.M. Gretarsson, R. Grosso, H. Grote, S. Grunewald, E. K. Gustafson, R. Gustafson, B. Hage, J.M. Hallam, D. Hammer, G. D. Hammond, C. Hanna, J. Hanson, J. Harms, G.M. Harry, I.W. Harry, E. D. Harstad, K. Haughian, K. Hayama, T. Hayler, J. Heefner, I. S. Heng, A. Heptonstall, M. Hewitson, S. Hild, E. Hirose, D. Hoak, K. A. Hodge, K. Holt, D. J. Hosken, J. Hough, E. Howell, D. Hoyland, B. Hughey, S. Husa, S. H. Huttner, D. R. Ingram, T. Isogai, A. Ivanov, W.W. Johnson, D. I. Jones, G. Jones, R. Jones, L. Ju, P. Kalmus, V. Kalogera, S. Kandhasamy, J. Kanner, E. Katsavounidis, K. Kawabe, S. Kawamura, F. Kawazoe, W. Kells, D. G. Keppel, A. Khalaidovski, F. Y. Khalili, R. Khan, E. Khazanov, H. Kim, P. J. King, J. S. Kissel, S. Klimenko, K. Kokeyama, V. Kondrashov, R. Kopparapu, S. Koranda, D. Kozak, V. Kringel, B. Krishnan, G. Kuehn, J. Kullman, R. Kumar, P. Kwee, P. K. Lam, M. Landry, M. Lang, B. Lantz, N. Lastzka, A. Lazzarini, P. Leaci, M. Lei, N. Leindecker, I. Leonor, H. Lin, P. E. Lindquist, T. B. Littenberg, N.A. Lockerbie, D. Lodhia, M. Lormand, P. Lu, M. Lubinski, A. Lucianetti, H. Lück, A. Lundgren, B. Machenschalk, M. MacInnis, M. Mageswaran, K. Mailand, C. Mak, I. Mandel, V. Mandic, S. Márka, Z. Márka, A. Markosyan, J. Markowitz, E. Maros, I.W. Martin, R.M. Martin, J. N. Marx, K. Mason, F. Matichard, L. Matone, R. A. Matzner, N. Mavalvala, R. McCarthy, D. E. McClelland, S. C. McGuire, G. McIntyre, D. J. A. McKechan, M. Mehmet, A. Melatos, A. C. Melissinos, G. Mendell, D. F. Menéndez, R. A. Mercer, L. Merrill, S. Meshkov, C. Messenger, M. S. Meyer, H. Miao, J. Miller, Y. Mino, S. Mitra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, O. Miyakawa, B. Moe, S. D. Mohanty, S. R. P. Mohapatra, G. Moreno, K. Mors, K. Mossavi, C. MowLowry, G. Mueller, H. Müller-Ebhardt, S. Mukherjee, A. Mullavey, J. Munch, P. G. Murray, T. Nash, R. Nawrodt, J. Nelson, G. Newton, E. Nishida, A. Nishizawa, J. O’Dell, B. O’Reilly, R. O’Shaughnessy, E. Ochsner, G.H. Ogin, R. Oldenburg, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Page, Y. Pan, C. Pankow, M.A. Papa, P. Patel, D. Pathak, M. Pedraza, L. Pekowsky, S. Penn, C. Peralta, A. Perreca, M. Pickenpack, I.M. Pinto, M. Pitkin, H. J. Pletsch, M.V. Plissi, F. Postiglione, M. Principe, R. Prix, L. Prokhorov, O. Puncken, V. Quetschke, F. J. Raab, D. S. Rabeling, H. Radkins, P. Raffai, Z. Raics, M. Rakhmanov, V. Raymond, C.M. Reed, T. Reed, H. Rehbein, S. Reid, D.H. Reitze, R. Riesen, K. Riles, P. Roberts, N.A. Robertson, C. Robinson, E. L. Robinson, S. Roddy, C. Röver, J. Rollins, J. D. Romano, J. H. Romie, S. Rowan, A. Rüdiger, K. Ryan, S. Sakata, L. Sammut, L. Sancho de la Jordana, V. Sandberg, V. Sannibale, L. Santamarı́a, G. Santostasi, S. Saraf, P. Sarin, B. S. Sathyaprakash, S. Sato, M. Satterthwaite, P. R. Saulson, R. Savage, R. Schilling, R. Schnabel, R. Schofield, B. Schulz, B. F. Schutz, P. Schwinberg, J. Scott, S.M. Scott, A. C. Searle, F. Seifert, D. Sellers, A. S. Sengupta, A. Sergeev, B. Shapiro, PHYSICAL REVIEW D 83, 042001 (2011)

7 citations


Posted Content
TL;DR: In this paper, the authors presented 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain and 5-35x10−49 strain for pointlike and extended sources respectively.
Abstract: The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.

2 citations