scispace - formally typeset
Search or ask a question

Showing papers by "Mallory S. E. Roberts published in 2013"


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, R. Abbott1  +745 moreInstitutions (73)
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Abstract: Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1, 2, 3, 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

805 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report on the discovery of four strongly irradiated millisecond pulsar companions and show that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the dayside temperature.
Abstract: In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modeling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10%-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of γ-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.

167 citations


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, Richard J. Abbott1  +893 moreInstitutions (93)
TL;DR: In this paper, a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection" where the signal was not initially revealed to the collaboration.
Abstract: Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the survey setup, search procedure, and discovery and follow-up timing of 13 pulsars, including a white-dwarf-neutron-star system or an unusual low-eccentricity double neutron star system.
Abstract: Over the summer of 2007, we obtained 1191 hr of “drift-scan” pulsar search observations with the Green Bank Telescope at a radio frequency of 350 MHz. Here we describe the survey setup, search procedure, and the discovery and follow-up timing of 13 pulsars. Among the new discoveries, one (PSR J1623−0841) was discovered only through its single pulses, two (PSRs J1327−0755 and J1737−0814) are millisecond pulsars, and another (PSR J2222−0137) is a mildly recycled pulsar. PSR J1327−0755 is a 2.7 ms pulsar at a dispersion measure (DM) of 27.9 pc cm −3 in an 8.7 day orbit with a minimum companion mass of 0.22 M� . PSR J1737−0814 is a 4.2 ms pulsar at a DM of 55.3 pc cm −3 in a 79.3 day orbit with a minimum companion mass of 0.06 M� . PSR J2222−0137 is a 32.8 ms pulsar at a very low DM of 3.27 pc cm −3 in a 2.4 day orbit with a minimum companion mass of 1.11 M� . It is most likely a white-dwarf–neutron-star system or an unusual low-eccentricity double neutron star system. Ten other pulsars discovered in this survey are reported in the companion paper Lynch et al.

129 citations


Journal ArticleDOI
TL;DR: Boyles et al. as discussed by the authors conducted a drift-scan survey with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision.
Abstract: We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered ~10,300 deg2 and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources—two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

120 citations


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, Richard J. Abbott1  +910 moreInstitutions (92)
TL;DR: In this article, the authors reported a search for gravitational waves from the inspiral, merger and ringdown of binary black holes with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010.
Abstract: We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).

108 citations


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, Richard J. Abbott1  +885 moreInstitutions (90)
TL;DR: In this paper, the results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to [-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5) are presented.
Abstract: This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.

100 citations



Journal ArticleDOI
S. Adrián-Martínez1, I. Al Samarai2, A. Albert, Michel André3  +1058 moreInstitutions (110)
TL;DR: In this article, the results of the first search for gravitational wave bursts associated with high energy neutrinos were presented, which could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy.
Abstract: We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

58 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma ray observatory, where the source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.?30 (0.?24) and a centroid 5'.
Abstract: We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.?30 (0.?24) and a centroid 5' from the Fermi gamma-ray pulsar PSR?J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N 0(E/3 TeV)??, with a differential spectral index of ? = 2.2 ? 0.2stat ? 0.3sys, and normalization N 0 = (9.1 ? 1.3stat ? 1.7sys) ? 10?14?cm?2?s?1?TeV?1. The integral flux, F ? = 4.0 ? 10?12 erg cm?2 s?1 above 1?TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4?kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.

32 citations


Journal ArticleDOI
TL;DR: In this paper, the first X-ray observations of five short orbital period (P_B < 1$ day) binary millisecond pulsars are described, including three pulsars with radio eclipses.
Abstract: We describe the first X-ray observations of five short orbital period ($P_B < 1$ day), $\gamma$-ray emitting, binary millisecond pulsars. Four of these, PSRs J0023+0923, J1124$-$3653, J1810+1744, and J2256$-$1024 are `black-widow' pulsars, with degenerate companions of mass $\ll0.1 M_{\odot}$, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing `redback' with a near Roche-lobe filling $\sim$0.2 solar mass non-degenerate companion. Data were taken using the \textit{Chandra X-Ray Observatory} and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256$-$1024, show significant orbital variability while PSR J1124$-$3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission and is similar to what has been detected in the low-mass X-ray binary to millisecond pulsar transition object PSR J1023+0038.

Journal ArticleDOI
TL;DR: The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars as discussed by the authors, which has successfully found over 100 new pulsars through large-area surveys.
Abstract: The Green Bank Telescope (GBT) is the largest fully steerable radio telescope in the world and is one of our greatest tools for discovering and studying radio pulsars. Over the last decade, the GBT has successfully found over 100 new pulsars through large-area surveys. Here I discuss the two most recent---the GBT 350 MHz Drift-scan survey and the Green Bank North Celestial Cap survey. The primary science goal of both surveys is to find interesting individual pulsars, including young pulsars, rotating radio transients, exotic binary systems, and especially bright millisecond pulsars (MSPs) suitable for inclusion in Pulsar Timing Arrays, which are trying to directly detect gravitational waves. These two surveys have combined to discover 85 pulsars to date, among which are 14 MSPs and many unique and fascinating systems. I present highlights from these surveys and discuss future plans. I also discuss recent results from targeted GBT pulsar searches of globular clusters and Fermi sources.

Journal ArticleDOI
TL;DR: In this paper, the authors report on the discovery of four strongly irradiated millisecond pulsar companions and show that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the dayside temperature.
Abstract: In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of gamma-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.