scispace - formally typeset
Search or ask a question

Showing papers by "Martin Gmitra published in 2015"


Journal ArticleDOI
TL;DR: The experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene are reviewed.
Abstract: The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material, as well as graphene-based spintronic devices Here we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other 2D materials

1,329 citations


Journal ArticleDOI
02 Apr 2015
TL;DR: In this paper, the dispersion of the valence and conduction bands at their extrema (the K, Q, Γ, and M points of the hexagonal Brillouin zone) in atomic crystals of semiconducting monolayer transition metal dichalcogenides (TMDCs) is described.
Abstract: We present k.p Hamiltonians parametrized by ab initio density functional theory calculations to describe the dispersion of the valence and conduction bands at their extrema (the K , Q , Γ , and M points of the hexagonal Brillouin zone) in atomic crystals of semiconducting monolayer transition metal dichalcogenides (TMDCs). We discuss the parametrization of the essential parts of the k.p[ Hamiltonians for MoS2 , MoSe2 , MoTe2 , WS2 , WSe2 , and WTe2 , including the spin-splitting and spin-polarization of the bands, and we briefly review the vibrational properties of these materials. We then use k.p theory to analyse optical transitions in two-dimensional TMDCs over a broad spectral range that covers the Van Hove singularities in the band structure (the M points). We also discuss the visualization of scanning tunnelling microscopy maps.

790 citations


Journal ArticleDOI
TL;DR: In this paper, first-principles calculations of graphene on monolayer molecular lattice were performed for optical spin transfer between two-dimensional transition-metal dichalcogenides and graphene.
Abstract: Hybrids of graphene and two-dimensional transition-metal dichalcogenides (TMDCs) have the potential to bring graphene spintronics to the next level. As we show here by performing first-principles calculations of graphene on monolayer ${\mathrm{MoS}}_{2}$, there are several advantages of such hybrids over pristine graphene. First, Dirac electrons in graphene exhibit a giant global proximity spin-orbit coupling, without compromising the semimetallic character of the whole system at zero field. Remarkably, these spin-orbit effects can be very accurately described by a simple effective Hamiltonian. Second, the Fermi level can be tuned by a transverse electric field to cross the ${\mathrm{MoS}}_{2}$ conduction band, creating a system of coupled massive and massless electron gases. Both charge and spin transport in such systems should be unique. Finally, we propose to use graphene/TMDC structures as a platform for optospintronics, in particular, for optical spin injection into graphene and for studying spin transfer between TMDCs and graphene.

277 citations


Journal ArticleDOI
27 May 2015
TL;DR: In this paper, the authors discuss the multifaceted problem of spin transport in hydrogenated graphene from a theoretical perspective, and the current experimental findings suggest that hydrogenation can either increase or decrease spin lifetimes.
Abstract: In this review we discuss the multifaceted problem of spin transport in hydrogenated graphene from a theoretical perspective. The current experimental findings suggest that hydrogenation can either increase or decrease spin lifetimes, which calls for clarification. We first discuss the spin–orbit coupling induced by local re-hybridization and C–H defect formation together with the formation of a local magnetic moment. First-principles calculations of hydrogenated graphene unravel the strong interplay of spin–orbit and exchange couplings. The concept of magnetic scattering resonances, recently introduced by Kochan et al (2014 Phys. Rev. Lett. 112 116602) is revisited by describing the local magnetism through the self-consistent Hubbard model in the mean field approximation in the dilute limit, while spin relaxation lengths and transport times are computed using an efficient real space order N wavepacket propagation method. Typical spin lifetimes on the order of 1 ns are obtained for 1 ppm of hydrogen impurities (corresponding to a transport time of about 50 ps), and the scaling of spin lifetimes with impurity density is described by the Elliott–Yafet mechanism. This reinforces the statement that local defect-induced magnetism can be at the origin of the substantial spin polarization loss in the clean graphene limit.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the spin-orbit coupling effects in fluorinated graphene were investigated and it was shown that fluorine's own spinorbit coupling is the principal cause of spin transport and spin relaxation.
Abstract: We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about 10 meV. To simulate the effects of a single adatom, we also calculate the electronic structure of a $10\ifmmode\times\else\texttimes\fi{}10$ supercell, with one fluorine atom in the top position. Since this dilute limit is useful to study spin transport and spin relaxation, we also introduce a realistic effective hopping Hamiltonian, based on symmetry considerations, which describes the supercell bands around the Fermi level. We provide the Hamiltonian parameters which are best fits to the first-principles data. We demonstrate that, unlike for the case of hydrogen adatoms, fluorine's own spin-orbit coupling is the principal cause of the giant induced local spin-orbit coupling in graphene. The $s{p}^{3}$ hybridization induced transfer of spin-orbit coupling from graphene's $\ensuremath{\sigma}$ bonds, important for hydrogenated graphene, contributes much less. Furthermore, the magnitude of the induced spin-orbit coupling due to fluorine adatoms is about 1000 times more than that of pristine graphene, and 10 times more than that of hydrogenated graphene. Also unlike hydrogen, the fluorine adatom is not a narrow resonant scatterer at the Dirac point. The resonant peak in the density of states of fluorinated graphene in the dilute limit lies 260 meV below the Dirac point. The peak is rather broad, about 300 meV, making the fluorine adatom only a weakly resonant scatterer.

43 citations



Journal ArticleDOI
TL;DR: The proposed model explains the observed spin relaxation in bilayer graphene rather naturally in terms of different broadening scales for the same underlying resonant processes, and predicts an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.
Abstract: We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in the graphene bilayer increases with carrier density. Although it has been commonly argued that a different mechanism must be at play for the two structures, our model explains this behavior rather naturally in terms of different broadening scales for the same underlying resonant processes. Not only do our results-using robust and first-principles inspired parameters-agree with experiment, they also predict an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.

34 citations


Journal ArticleDOI
TL;DR: This work traces the interface-to-bulk transition, and follows the emergence of the interfacial spin–orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide, as the epitaxially grown iron channel increases from four to eight monolayer.
Abstract: The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces—the reduced structural symmetry creates emergent spin–orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin–orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin–orbit fields.

32 citations


Journal Article
TL;DR: In this paper, the spin-orbit coupling effects in fluorinated graphene were investigated, and it was shown that fluorine's own spinorbit coupling is the principal cause of the giant induced local spin-loop coupling in graphene, unlike for the case of hydrogen adatoms.
Abstract: We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about 10 meV. To simulate the effects of a single adatom, we also calculate the electronic structure of a 10×10 supercell, with one fluorine atom in the top position. Since this dilute limit is useful to study spin transport and spin relaxation, we also introduce a realistic effective hopping Hamiltonian, based on symmetry considerations, which describes the supercell bands around the Fermi level. We provide the Hamiltonian parameters which are best fits to the first-principles data. We demonstrate that, unlike for the case of hydrogen adatoms, fluorine's own spin-orbit coupling is the principal cause of the giant induced local spin-orbit coupling in graphene. The sp3 hybridization induced transfer of spin-orbit coupling from graphene's σ bonds, important for hydrogenated graphene, contributes much less. Furthermore, the magnitude of the induced spin-orbit coupling due to fluorine adatoms is about 1000 times more than that of pristine graphene, and 10 times more than that of hydrogenated graphene. Also unlike hydrogen, the fluorine adatom is not a narrow resonant scatterer at the Dirac point. The resonant peak in the density of states of fluorinated graphene in the dilute limit lies 260 meV below the Dirac point. The peak is rather broad, about 300 meV, making the fluorine adatom only a weakly resonant scatterer.

29 citations


Proceedings ArticleDOI
01 Dec 2015-Symmetry
TL;DR: In this article, a spin-flip resonant scattering off local magnetic moments is proposed for spin relaxation on graphene, where the resonant scatterers do not appear to substantially affect graphene's measured resistivity, but are dominating spin relaxation.
Abstract: We give a tutorial account of our recently proposed mechanism for spin relaxation based on spin-flip resonant scattering off local magnetic moments. The mechanism is rather general, working in any material with a resonant local moment, but we believe that its particular niche is graphene, whose measured spin relaxation time is 100-1000 ps. Conventional spin-orbit coupling based mechanisms (Elliott-Yafet or Dyakonov-Perel) would require large concentrations (1000 ppm) of impurities to explain this. Our mechanism needs only 1 ppm of resonant local moments, as these act as local spin hot spots: the resonant scatterers do not appear to substantially affect graphene's measured resistivity, but are dominating spin relaxation. In principle, the local moments can come from a variety of sources. Most likely would be organic molecule adsorbants or metallic adatoms. As the representative model, particularly suited for a tutorial, we consider hydrogen adatoms which are theoretically and experimentally demonstrated to yield local magnetic moments when chemisorbed on graphene. We introduce the scattering formalism and apply it to graphene, to obtain the T-matrix and spin-flip scattering rates using the generalized Fermi golden rule.

3 citations


Posted Content
TL;DR: In this paper, a resonant scattering model due to adatoms on both dimer and non-dimer sites was proposed to explain the observed spin-relaxation in bilayer graphene.
Abstract: We propose that the observed spin-relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and non-dimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in graphene bilayer increases with carrier density. Although it has been commonly argued that a different mechanism must be at play for the two structures, our model explains this behavior rather naturally in terms of different broadening scales for the same underlying resonant processes. Not only our results---using robust and first-principles inspired parameters---agree with experiment, they also predict an experimentally testable sharp decrease of the spin-relaxation rate at high carrier densities.