scispace - formally typeset
Search or ask a question

Showing papers by "Michael B. Sporn published in 1986"


Journal ArticleDOI
TL;DR: Further data are obtained to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of T GF-beta compared tomedia obtained from unactivated lymphocytes.
Abstract: Transforming growth factor type beta (TGF-beta), when injected subcutaneously in newborn mice, causes formation of granulation tissue (induction of angiogenesis and activation of fibroblasts to produce collagen) at the site of injection. These effects occur within 2-3 days at dose levels than 1 microgram. Parallel in vitro studies show that TGF-beta causes marked increase of either proline or leucine incorporation into collagen in either an NRK rat fibroblast cell line or early passage human dermal fibroblasts. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) do not cause these same in vivo and in vitro effects; in both rat and human fibroblast cultures, EGF antagonizes the effects of TGF-beta on collagen formation. We have obtained further data to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of TGF-beta compared to media obtained from unactivated lymphocytes. These activated media markedly stimulate proline incorporation into collagen in NRK cells; this effect is blocked by a specific antibody to TGF-beta. The data are all compatible with the hypothesis that TGF-beta is an important mediator of tissue repair.

2,860 citations


Journal ArticleDOI
TL;DR: TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF- beta.
Abstract: This study examines the potential role of transforming growth factor beta (TGF-beta) in the regulation of human T lymphocyte proliferation, and proposes that TGF-beta is an important autoregulatory lymphokine that limits T lymphocyte clonal expansion, and that TGF-beta production by T lymphocytes is important in T cell interactions with other cell types. TGF-beta was shown to inhibit IL-2-dependent T cell proliferation. The addition of picograms amounts of TGF-beta to cultures of IL-2-stimulated human T lymphocytes suppressed DNA synthesis by 60-80%. A potential mechanism of this inhibition was found. TGF-beta inhibited IL-2-induced upregulation of the IL-2 and transferrin receptors. Specific high-affinity receptors for TGF-beta were found both on resting and activated T cells. Cellular activation was shown to result in a five- to sixfold increase in the number of TGF-beta receptors on a per cell basis, without a change in the affinity of the receptor. Finally, the observations that activated T cells produce TGF-beta mRNA and that TGF-beta biologic activity is present in supernatants conditioned by activated T cells is strong evidence that T cells themselves are a source of TGF-beta. Resting T cells were found to have low to undetectable levels of TGF-beta mRNA, while PHA activation resulted in a rapid increase in TGF-beta mRNA levels (within 2 h). Both T4 and T8 lymphocytes were found to make mRNA for TGF-beta upon activation. Using both a soft agar assay and a competitive binding assay, TGF-beta biologic activity was found in supernatants conditioned by T cells; T cell activation resulted in a 10-50-fold increase in TGF-beta production. Thus, TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF-beta.

1,608 citations


Journal ArticleDOI
01 Aug 1986-Science
TL;DR: TGF-beta's marked ability to enhance formation of connective tissue in vivo suggests several therapeutic applications.
Abstract: Transforming growth factor-beta (TGF-beta) is a multifunctional peptide that controls proliferation, differentiation, and other functions in many cell types. Many cells synthesize TGF-beta and essentially all of them have specific receptors for this peptide. TGF-beta regulates the actions of many other peptide growth factors and determines a positive or negative direction of their effects. Its marked ability to enhance formation of connective tissue in vivo suggests several therapeutic applications.

1,194 citations


Journal Article
TL;DR: Data is presented that support a role for transforming growth factor (TGF)-beta in this regulatory process that limits B lymphocyte proliferation and ultimate differentiation and it was demonstrated that B lymphocytes secrete TGF-beta.
Abstract: The growth and differentiation of B cells to immunoglobulin (Ig)-secreting cells is regulated by a variety of soluble factors. This study presents data that support a role for transforming growth factor (TGF)-beta in this regulatory process. B lymphocytes were shown to have high-affinity receptors for TGF-beta that were increased fivefold to sixfold after in vitro activation. The addition of picogram quantities of TGF-beta to B cell cultures suppressed factor-dependent, interleukin 2 (IL 2) B cell proliferation and markedly suppressed factor-dependent (IL 2 or B cell differentiation factor) B cell Ig secretion. In contrast, the constitutive IgG production by an Epstein Barr virus-transformed B cell line was not modified by the presence of TGF-beta in culture. This cell line was found to lack high-affinity TGF-beta receptors. The degree of inhibition of B cell proliferation observed in in vitro cultures was found to be dependent not only on the concentration of TGF-beta added but also on the concentration of the growth stimulatory substance (IL 2) present. By increasing the IL 2 concentrations in culture, the inhibition of proliferation induced by TGF-beta could be partially overcome. In contrast, the inhibition of Ig secretion induced by TGF-beta could not be overcome by a higher concentration of stimulatory factor, demonstrating that the suppression of B cell differentiation by TGF-beta is not due solely to its effects on proliferation. Furthermore, it was demonstrated that B lymphocytes secrete TGF-beta. Unactivated tonsillar B cells had detectable amounts of TGF-beta mRNA on Northern blot analysis, and B cell activation with Staphylococcus aureus Cowan (SAC) resulted in a twofold to threefold increase in TGF-beta mRNA. Supernatants conditioned by unactivated B cells had small amounts of TGF-beta, SAC activation of the B cells resulted in a sixfold to sevenfold increase in the amount of TGF-beta present in the supernatants. Thus, B lymphocytes synthesize and secrete TGF-beta and express receptors for TGF-beta. The addition of exogenous TGF-beta to cultures of stimulated B cells inhibits subsequent proliferation and Ig secretion. TGF-beta may function as an autocrine growth inhibitor that limits B lymphocyte proliferation and ultimate differentiation.

740 citations


Journal ArticleDOI
TL;DR: Epinephrine antagonized the TGF-beta-induced inhibition of DNA synthesis and squamous differentiation of NHBE cells, and epinephrine appear to affect different intracellular pathways that control growth and differentiation processes ofNHBE cells.
Abstract: Type beta transforming growth factor (TGF-beta) was shown to be the serum factor responsible for inducing normal human bronchial epithelial (NHBE) cells to undergo squamous differentiation. NHBE cells were shown to have high-affinity receptors for TGF-beta. TGF-beta induced the following markers of terminal squamous differentiation in NHBE cells: (i) increase in Ca ionophore-induced formation of crosslinked envelopes; (ii) increase in extracellular activity of plasminogen activator; (iii) irreversible inhibition of DNA synthesis; (iv) decrease in clonal growth rate; and (v) increase in cell surface area. The IgG fraction of anti-TGF-beta antiserum prevented both the inhibition of DNA synthesis and the induction of differentiation by either TGF-beta or whole blood-derived serum. Therefore, TGF-beta is the primary differentiation-inducing factor in serum for NHBE cells. In contrast, TGF-beta did not inhibit DNA synthesis of human lung carcinoma cells even though the cells possess comparable numbers of TGF-beta receptors with similar affinities for the factor. Epinephrine antagonized the TGF-beta-induced inhibition of DNA synthesis and squamous differentiation of NHBE cells. Although epinephrine increased the cyclic AMP levels in NHBE cells, TGF-beta did not alter the intracellular level in NHBE cells in either the presence or absence of epinephrine. Therefore, epinephrine and TGF-beta appear to affect different intracellular pathways that control growth and differentiation processes of NHBE cells.

563 citations


Journal Article
TL;DR: Results indicate that in addition to inhibitory effects on T and B cells, TGF-beta also inhibits NK cell function.
Abstract: Type beta transforming growth factor (TGF-beta) is a unique polypeptide that has been isolated from a number of different tissues and can induce the phenotypic transformation of non-neoplastic fibroblasts as measured by the stimulation of their growth in soft agar. Recently, TGF-beta has been demonstrated to exert profound inhibitory effects on T and B lymphocyte proliferation. In this study, the effects of TGF-beta on natural killer (NK) cell function were investigated. After 20 hr of culture in the presence of TGF-beta, the NK activity of peripheral blood lymphocytes (PBL) was significantly reduced compared with PBL cultured in medium alone. Similarly, TGF-beta produced a significant depression in the cytolytic activity of highly enriched large granular lymphocytes (LGL). This effect of TGF-beta appeared to be mediated directly on the effector cells, because cultivation of the K562 target cells in TGF-beta did not affect target cell susceptibility to lysis. Binding studies with 125I-TGF-beta indicated that LGL possess approximately 1400 high-affinity (Kd = 1PM) receptors/cell, which represents a considerably higher affinity receptor for TGF-beta than that found on fibroblasts. Culturing of PBL and LGL in TGF-beta resulted in a marked blunting of the boosting of NK cytolysis by interferon-alpha but not by interleukin 2, which suggested that TGF-beta may down-regulate interferon-alpha receptors on NK cells. These results, indicate that in addition to inhibitory effects on T and B cells, TGF-beta also inhibits NK cell function. Although the in vivo role of TGF-beta is presently undefined, it may be an important immunoregulatory protein that has a negative influence on lymphocyte activation.

561 citations


Journal ArticleDOI
TL;DR: The data suggest that platelet-mediated proliferation of aortic smooth muscle cells in vivo may not result solely from the stimulatory effect of Platelet-derived growth factor (PDGF), but rather from an interaction of platelet factors which has the intrinsic ability to limit as well as stimulate mitosis.
Abstract: A specific radioimmunoassay for type beta transforming growth factor (TGF-beta) was developed and used to show that human platelets treated with thrombin release TGF-beta as a consequence of degranulation. The thrombin concentrations required to induce release of TGF-beta parallel those concentrations that release the alpha-granule marker, beta-thromboglobulin. Related studies showed that TGF-beta acts on early passage, explant cultures of bovine aortic smooth muscle cells by inhibiting the effect of mitogens on proliferation of subconfluent cell monolayers yet synergizing with mitogens to stimulate growth of the same cells when cultured in soft agar. The results show that primary cultures of bovine aortic smooth muscle cells and established normal rat kidney cells behave similarly with regard to TGF-beta action. Moreover, the data suggest that platelet-mediated proliferation of aortic smooth muscle cells in vivo may not result solely from the stimulatory effect of platelet-derived growth factor (PDGF), but rather from an interaction of platelet factors which has the intrinsic ability to limit as well as stimulate mitosis.

532 citations


Journal ArticleDOI
TL;DR: It is concluded that most if not all of the DI activity found in medium conditioned by Buffalo rat liver cells can be attributed to the presence of TGF-beta or a very similar molecule, and offer a potentially useful approach to study the control of myogenesis.

237 citations


Journal ArticleDOI
TL;DR: A model for the mechanism of cooperation between myc and ras oncogenes is suggested in which ras- like genes induce growth factor production, while myc-like genes increase the responsiveness of cells to these factors.
Abstract: To identify functional relationships between oncogenes and growth factors, we compared the effects of transfected myc and ras oncogenes on the responsiveness of Fischer rat 3T3 cells to three growth factors: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-beta). Control cells did not grow in soft agar under any conditions. ras-Transfected cells grew in soft agar under all conditions tested and were insensitive to the stimulatory effects of exogenous growth factors. These cells secreted elevated levels of both EGF-like factors and TGF-beta, suggesting that the lack of responsiveness of these cells to exogenous growth factors arose from autocrine stimulation. myc-Transfected cells displayed conditional anchorage-independent growth: they formed numerous colonies in soft agar in the presence of EGF but relatively few colonies in the presence of PDGF or TGF-beta. Secretion of EGF-like factors and TGF-beta by these cells was not elevated above that of control cells. These results suggest a model for the mechanism of cooperation between myc and ras oncogenes in which ras-like genes induce growth factor production, while myc-like genes increase the responsiveness of cells to these factors.

151 citations


Journal ArticleDOI
TL;DR: In vivo studies show that the basis for the retinoid-deficient defect is the failure of the primitive heart tubes to open at their posterior end, thus preventing the formation of omphalomesenteric veins normally connecting the embryonal with the extraembryonal circulatory system.
Abstract: The regulatory role of retinoids in growth and differentiation has been examined in vitro and in vivo by light and scanning electron microscopy using retinoid-deficient and control quail embryos between the 5–15 somite stage, as well as 2- and 2.5-day-old embryos. Fertile, retinoid-deficient eggs were obtained from flocks of quail maintained on a retinoid- and carotenoid-deficient diet, supplemented only with small amounts of retinoic acid methyl ester as described by Thompson et al. 1969. As described previously, retinoid deprivation during embryonal development causes abnormalities in organs of epithelial and mesenchymal origin, most dramatically preventing the formation of the extraembryonal circulatory system in the avian embryo. Our in vivo studies show that the basis for the latter defect is the failure of the primitive heart tubes to open at their posterior end, thus preventing the formation of omphalomesenteric veins normally connecting the embryonal with the extraembryonal circulatory system. Early manifestation of the retinoid-deficient defect may result also in formation of a cardia bifida, late manifestation in development of a single dilated ventricle. In contrast, the extraembryonal vascular system of blood islands is well developed. Heart function as shown by the rate of heart beat is reduced in deficient embryos. Our in vitro studies demonstrate similar defects in the development of the circulatory system by culture of normal 24-h embryos on retinoid-deficient agar medium; conversely, normal development is observed upon culture of retinoid-deficient embryos on retinoid-containing agar medium.

128 citations


Journal ArticleDOI
TL;DR: Swiss 3T3 cells respond to picomolar concentrations of type beta transforming growth factor with a dose-dependent increase in the formation of colonies in soft agar, a decrease in the growth of cells in monolayer culture, and changes in morphology, indicating that these cells have functional TGF-beta receptors able to mediate a biological response.
Abstract: Swiss 3T3 cells respond to picomolar concentrations of type beta transforming growth factor (TGF-beta) with a dose-dependent increase in the formation of colonies in soft agar, a decrease in the growth of cells in monolayer culture, and changes in morphology. This indicates that these cells have functional TGF-beta receptors able to mediate a biological response. Binding analysis revealed a single class of TGF-beta binding sites (80 000 per cell) with a Kd approximately 50 pM. Receptors were affinity-labeled by covalent attachment to 125I-TGF-beta with bis(sulfosuccinimidyl) suberate (BS3). The complexes formed were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 100 mM dithiothreitol and migrated as Mr approximately 180 000 complexes in 3-10% linear gradient gels. The apparent size of these complexes was larger in gels with a higher percentage of acrylamide. The labeling of the 125I-TGF-beta-receptor complexes was inhibited by the presence of excess unlabeled TGF-beta but was unaffected by other growth factors. These complexes could be formed by cross-linking whole cells, intact membranes, or solubilized membranes, demonstrating that the TGF-beta receptor is located on the plasma membrane and can be solubilized without destruction of its ability to bind TGF-beta. A larger Mr approximately 360 000 complex was present in 3-10% linear gradient gels without reduction or after extensive cross-linking, suggesting that the receptor consists of two subunits of similar size attached by disulfide bonds. Since BS3 is membrane-impermeable, at least a portion of both subunits is located on the outer surface of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: The results suggest that the transforming potential of PDGF in an appropriate responsive cell can be controlled not only through its interaction with its own receptor, but also by the presence of inhibitory factors such as TGF‐β.
Abstract: Several growth factors implicated in the process of cellular transformation were tested for their ability to induce anchorage-independent (AI) growth of primary rat embryo (RE) cells. Our results show that in the presence of 10% calf serum, platelet-derived growth factor (PDGF), 1-30 ng/ml, has the strongest effect of all growth factors tested on AI growth. Type-beta transforming growth factor (TGF-beta), by itself, does not stimulate AI growth, and it inhibits the PDGF-induced colony formation in a dose-dependent manner (ED50 approximately 0.03 ng/ml). Qualitatively similar responses are obtained by using an established line of fibroblasts, NIH 3T3 cells; the principal difference between the response of the primary cells and the established cell line is in colony-forming efficiency in soft agar culture (15% and 90%, respectively, for growth of colonies greater than 1,500 micron2 diameter in the presence of 10 ng/ml PDGF). Since AI growth has been shown to correlate well with tumorigenicity in vivo, our results suggest that the transforming potential of PDGF in an appropriate responsive cell can be controlled not only through its interaction with its own receptor, but also by the presence of inhibitory factors such as TGF-beta.

Journal ArticleDOI
TL;DR: It is shown that retinoic acid greatly inhibits the anchorage-independent growth of a rat fibroblast cell line that has been transfected with the c-myc gene, particularly when these cells are stimulated by the combination of platelet-derived growth factor and transforming growth factor-beta.
Abstract: In several recent reviews, we have suggested that the mechanism of action of retinoids in controlling cell differentiation is related to their effects on the expression of oncogenes and peptide growth factors. It is currently believed that oncogenes control metabolic pathways that involve peptide growth factors and their receptors, as well as postreceptor signaling mechanisms. Retinoids, therefore, have been valuable probes to study the function of oncogenes and peptide growth factors. In several tumor cells, including human promyelocytic leukemia, human and murine neuroblastoma, and murine teratocarcinoma, retinoic acid induces terminal differentiation, accompanied by suppression of the expression of either the c-myc or the N-myc gene. Many studies have indicated that retinoic acid can markedly increase the number of cellular receptors for epidermal growth factor, which is partially encoded by another oncogene, erb-B. We have shown that retinoic acid greatly inhibits the anchorage-independent growth of a rat fibroblast cell line that has been transfected with the c-myc gene, particularly when these cells are stimulated by the combination of platelet-derived growth factor and transforming growth factor-beta. At present, the mechanisms by which retinoids control oncogene and growth factor expression are unknown. A wide range of new compounds, including the retinoidal benzoic acid derivatives, are now available to study these mechanisms, and will necessitate the identification of a high-affinity receptor for retinoids and the elucidation of the interaction of this receptor with the genome of the cell. The recent synthesis of new terephthalic acid anilides and chalcone carboxylic acid derivatives, which have retinoid-like activity, offers a particularly useful approach to this problem.

Journal Article
TL;DR: The design of new expression vectors carrying growth factor genes will permit further study of the specific effects of constitutive growth factor synthesis in cells expressing receptors for the same growth factors.
Abstract: There is ample evidence for autocrine action of growth factors in malignant transformation and for recognition of growth factor genes as proto-oncogenes. The design of new expression vectors carrying growth factor genes will permit further study of the specific effects of constitutive growth factor synthesis in cells expressing receptors for the same growth factors.

Journal ArticleDOI
TL;DR: This method can assay receptors from purified membranes and crude extracts of cells and tissues, and was used to demonstrate that TGF-beta receptors are glycosylated and retain a high affinity (Kd approximately 530 pM) for ligand after solubilization.