scispace - formally typeset
Search or ask a question

Showing papers by "Paula I. Moreira published in 2013"


Journal ArticleDOI
TL;DR: An overview of the clinical significance of DM in the male reproductive health with emphasis on the molecular mechanisms beyond glucose fluctuation and transport in testicular cells is presented.

205 citations


Journal ArticleDOI
TL;DR: Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for spermatogenesis as mentioned in this paper.
Abstract: Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.

177 citations


Journal ArticleDOI
TL;DR: The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known.
Abstract: Significance: Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. Recent Advances: A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. Critical Issues: The accumulation of...

133 citations


Journal ArticleDOI
TL;DR: This work aims to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T1D-associated cognitive dysfunction.

131 citations


Journal ArticleDOI
TL;DR: It is proposed that phosphorylated tau protein could be playing the role of potential connector and, therefore, that a combined therapy involving antioxidants and check points for synaptic plasticity during early stages of the disease could become a viable therapeutic option for AD treatment.
Abstract: Alzheimer’s disease (AD) is defined by the concurrence of abnormal aggregates composed of phosphorylated tau protein and of abnormal cellular changes including neurite degeneration, loss of neurons, and loss of cognitive functions. While a number of mechanisms have been implicated in this complex disease, oxidative stress remains one of the earliest and strongest events related to disease progression. However, the mechanism that links oxidative stress and cognitive decline remains elusive. Here, we propose that phosphorylated tau protein could be playing the role of potential connector and, therefore, that a combined therapy involving antioxidants and check points for synaptic plasticity during early stages of the disease could become a viable therapeutic option for AD treatment.

119 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the insulin-resistant brain state that characterizes this rat model of sAD is accompanied by the occurrence of mitochondrial abnormalities reinforcing the validity of this animal model to study sAD pathogenesis and potential therapies.
Abstract: This study aimed to show that the rat model of sporadic Alzheimer's disease (sAD) generated by the intracerebroventricular (icv) injection of a sub-diabetogenic dose of streptozotocin (icvSTZ) is characterized by brain mitochondrial abnormalities. Three-month-old male Wistar rats were investigated 5 weeks after a single bilateral icv injection of STZ (3 mg/ Kg) or vehicle. icvSTZ administration induced a decrease in brain weight and cognitive decline, without affecting blood glucose levels. icvSTZ administration also resulted in a significant increase in hippocampal amyloid beta peptide 1-42 (Aβ(1-42)) levels as well as in cortical and hippocampal hyperphosphorylated tau protein levels. Brain mitochondria from icvSTZ rats revealed deficits in their function, as shown by a decrease in mitochondrial transmembrane potential, repolarization level, ATP content, respiratory state 3, respiratory control ratio and ADP/O index and an increase in lag phase of repolarization. Mitochondria from icvSTZ rats also displayed a decrease in pyruvate and α-ketoglutarate dehydrogenases and cytochrome c oxidase activities and an increase in the susceptibility to calcium-induced mitochondrial permeability transition. An increase in hydrogen peroxide and lipid peroxidation levels and a reduction in glutathione content were also observed in mitochondria from icvSTZ rats. These results demonstrate that the insulin-resistant brain state that characterizes this rat model of sAD is accompanied by the occurrence of mitochondrial abnormalities reinforcing the validity of this animal model to study sAD pathogenesis and potential therapies.

100 citations


Journal ArticleDOI
TL;DR: The results show that mitochondrial dysfunction induced by long-term hyperglycemic effects is exacerbated by recurrent hypoglycemia, which may compromise the function and integrity of brain cells.

75 citations


Journal ArticleDOI
TL;DR: The notion that T2D predisposes to cerebrovascular alterations, cognitive decline, and development of AD is supported.
Abstract: Type 2 diabetes (T2D) is considered a major risk factor for Alzheimer's disease (AD). To elucidate the links between both pathological conditions, we compared behavioral and cognitive functions, cerebral amyloid-β peptide (Aβ) levels and vasculature integrity of 11-month-old T2D and AD mice. For this purpose, we performed behavioral tests (open field, object recognition, Y-maze, and elevated plus maze tests), ELISA to assess plasma markers of endothelial/vascular dysfunction, spectrophotometric assays to evaluate cerebral vascular permeability and enzymatic activities, and immunohistochemistry for the assessment of Aβ levels. Both T2D and AD showed similar behavioral and cognitive anomalies characterized by increased fear and anxiety and decreased learning and memory abilities. Interestingly, both groups of animals presented increased plasma markers of endothelial/vascular dysfunction and permeability of cerebral vasculature and impaired mitochondrial enzymatic activities. In addition, a significant increase in Aβ levels was observed in the cortex and hippocampus of T2D mice. These results support the notion that T2D predisposes to cerebrovascular alterations, cognitive decline, and development of AD.

71 citations


Journal ArticleDOI
TL;DR: Exposure to 2,4-D altered glucose uptake and metabolization in SCs, as well as lactate metabolism and export that may result in impaired spermatogenesis.

55 citations


Journal ArticleDOI
TL;DR: Evidence is provided that sex steroid hormones action in SCs energy metabolism is mediated through modulation in glycolysis-related transporters and enzymes, particularly at the transcriptional level.
Abstract: Sertoli cells (SCs) glucose metabolism is crucial for spermatogenesis since developing germ cells consume lactate produced by SCs as their main energy source. Recently, androgens and estrogens have been implicated in SCs energy metabolism modulation, although the molecular mechanisms remained undisclosed. Here, we report the effect of sex steroid hormones on key points of cultured rat SCs glycolytic pathway. We used primary cultures of immature rat SCs treated with 17β-estradiol (E2) or 5α-dihydrotestosterone (DHT). The transcript levels of glucose transporters (GLUTs), phosphofructokinase 1 (PFK-1) and lactate dehydrogenase C (LDH C) were analyzed after 25 and 50 h of culture by qPCR. Protein levels of GLUTs, PFK-1, LDH and monocarboxylate transporter 4 (MCT4) after 25 and 50 h were determined by western blot and LDH activity was also assessed. Our results show that both E2 and DHT downregulated the transcript levels of PFK-1, GLUT1 and GLUT3 after 50 h. However, only DHT-treated cells presented a downregulation of LDH C transcript levels. Interestingly, the protein levels of these enzymes and transporters remained unaltered except in DHT-treated cells that presented a significant decrease on GLUT1 protein levels evidencing a possible site for the regulation of SCs glucose metabolism by androgens. Taken together, our results provide evidence that sex steroid hormones action in SCs energy metabolism is mediated through modulation in glycolysis-related transporters and enzymes, particularly at the transcriptional level. DHT decreased GLUT1 protein levels and increased LDH activity after 25 h, evidencing key points for this hormone action in the regulation of SCs metabolism.

53 citations


Journal ArticleDOI
TL;DR: Dietary changes can significantly reduce the risk of T2D and Alzheimer's disease and thereby increase the quality of life and improve longevity.
Abstract: Purpose of reviewRecent findings suggest that high-sugar diets can lead to cognitive impairment predisposing to neurodegenerative disorders such as Alzheimer's disease. This article discusses metabolic derangements induced by high-fructose/sucrose diets and presents evidence for the involvement of i

Journal ArticleDOI
TL;DR: The results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.
Abstract: We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.

Journal ArticleDOI
TL;DR: It is shown here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling (“slipping”) of the ATP synthases, and this action is dependent on the presence of ATP.
Abstract: 17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling ("slipping") of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and VFCCP (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and Volig were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the Fo component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F1-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.

Journal ArticleDOI
TL;DR: This review highlights the current knowledge pertaining the role of Hif on brain response to hypoxia and its close association with the development of Alzheimer's, and Parkinson's disease and amyotrophic lateral sclerosis and the potential therapeutic effects of HIF stabilizers against the symptomatic and neuropathological features of the abovementioned neurodegenerative diseases.
Abstract: Brain structural and functional integrity exquisitely relies on a regular supply of oxygen. In order to circumvent the potential deleterious consequences of deficient oxygen availability, brain triggers endogenous adaptive and pro-survival mechanisms - a phenomenon known as brain hypoxic tolerance. The highly conserved hypoxia-inducible family (HIF) of transcription factors is the "headquarter" of the homeostatic response of the brain to hypoxia. HIF acts as a cellular oxygen sensor and regulates the expression of proteins involved in a broad range of biological processes, including neurogenesis, angiogenesis, erythropoiesis, and glucose metabolism, and thus, enables brain cells to survive in low-oxygen conditions. Hypoxia, as well as hypoxia-reoxygenation, is intimately implicated in the clinical and pathological course of several neurodegenerative diseases. Thus, two major questions can arise: Is HIF signaling and brain response to hypoxia compromised in neurodegenerative diseases? If so, are HIF stabilizers a possible therapeutic strategy to halt or prevent the progression of neurodegenerative diseases? This review highlights the current knowledge pertaining the role of HIF on brain response to hypoxia and its close association with the development of Alzheimer's, and Parkinson's disease and amyotrophic lateral sclerosis. Finally, the potential therapeutic effects of HIF stabilizers (deferoxamine, clioquinol, M30, HLA20, DHB, FG0041, and VK-28) against the symptomatic and neuropathological features of the abovementioned neurodegenerative diseases will be discussed.

Journal ArticleDOI
TL;DR: This review examines the neurodegenerative events associated with diabetes, highlighting the role of hyperglycemia and/or hypoglycemia on cognitive function and neuronal UCPs as possible therapeutic targets for the treatment of diabetes-associated central complications and neuro degenerative diseases, namely Alzheimer's and Parkinson's diseases.
Abstract: Diabetes mellitus is one of the most prevalent chronic diseases. Since glucose is the main fuel of the brain, its levels should be maintained within a narrow range to ensure normal brain function. Indeed, the literature shows that uncontrolled blood glucose levels, whether too high or too low, impact brain structure and function potentiating cognitive impairment. Uncoupling proteins (UCPs) are a family of mitochondrial anioncarrier proteins located on the inner mitochondrial membrane, and their primary function is to leak protons from the intermembrane space into the mitochondrial matrix. The specific role of neuronal UCPs has been widely discussed and although there is no general agreement, there is a strong conviction that these proteins may be involved in the defense against mitochondrial reactive oxygen species (ROS) production and, consequently, protecting against oxidative damage. The generation of ROS is increasingly recognized as playing an important role in diabetes, neurodegenerative disorders and aging where mitochondria are both sources and targets of these reactive species. This review examines the neurodegenerative events associated with diabetes, highlighting the role of hyperglycemia and/or hypoglycemia on cognitive function. The role of mitochondria, neuronal UCPs and their impact in central nervous system will be elucidated. Finally, we will discuss neuronal UCPs as possible therapeutic targets for the treatment of diabetes-associated central complications and neurodegenerative diseases, namely Alzheimer’s and Parkinson’s diseases.

Journal ArticleDOI
TL;DR: The results show that recurrent-hypoglycemia renders mitochondria more susceptible to UCPs modulation while the proton-leak of long-term hyperglycemic rats is mainly modulated by ANT, which suggest that brain cortical mitochondria have distinct adaptation mechanisms in face of different metabolic insults.
Abstract: A growing body of evidence suggests that mitochondrial proton-leak functions as a regulator of reactive oxygen species production and its modulation may limit oxidative injury to tissues. The main purpose of this work was to characterize the proton-leak of brain cortical mitochondria from long-term hyperglycemic and insulin-induced recurrent hypoglycemic rats through the modulation of the uncoupling protein 2 (UCP2) and adenine nucleotide translocator (ANT). Streptozotocin-induced diabetic rats were treated subcutaneously with twice-daily insulin injections during 2 weeks to induce the hypoglycemic episodes. No differences in the basal proton-leak, UCP2 and ANT protein levels were observed between the experimental groups. Mitochondria from recurrent hypoglycemic rats presented a decrease in proton-leak in the presence of GDP, a specific UCP2 inhibitor, while an increase in proton-leak was observed in the presence of linoleic acid, a proton-leak activator, this effect being reverted by the simultaneous addition of GDP. Mitochondria from long-term hyperglycemic rats showed an enhanced susceptibility to ANT modulation as demonstrated by the complete inhibition of basal and linoleic acid-induced proton-leak caused by the ANT specific inhibitor carboxyatractyloside. Our results show that recurrent-hypoglycemia renders mitochondria more susceptible to UCPs modulation while the proton-leak of long-term hyperglycemic rats is mainly modulated by ANT, which suggest that brain cortical mitochondria have distinct adaptation mechanisms in face of different metabolic insults.

Journal ArticleDOI
TL;DR: These findings demonstrate lipid-cross-linking peroxidation primarily involves lysine-rich neurofilaments and is restricted to intramolecular cross-links.
Abstract: Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently binds amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated to be intimately associated with pathological lesions of Alzheimer's disease (AD), suggesting that oxidative stress is a major component in the disease. Here, we examined the HNE-cross-linking modifications by using an antibody specific for a lysine–lysine cross-link. Since in a prior study we noted no immunolabeling of neuritic plaques or neurofibrillary tangles but instead found strong labeling of axons, we focused this study on axons. Axonal labeling was examined in mouse sciatic nerve, and immunoblotting showed the cross-link was restricted to neurofilament heavy and medium subunits, which while altering migration, did not indicate larger NF aggregates, indicative of intermolecular cross-links. Examination of mice at various ages showed the extent ...

Journal ArticleDOI
TL;DR: Compounds 1 and 3 were the most effective compounds in protecting mitochondrial function against H2O2-induced oxidative stress in U373-MG, whereas all three diterpenoids studied were significantly active against PC12 cells.
Abstract: Mitochondrial impairment and oxidative stress are considered widely to be central events in many forms of neurodegenerative disease. The current study has evaluated for the first time the potential protective role of three diterpenoids [andalusol (1), conchitriol (2), and lagascatriol (3)] in response to the deleterious H2O2-induced changes on mitochondrial function. U373-MG human astrocytoma cells and PC12 rat adrenal pheochromocytoma cells were used as models for evaluating the cytoprotective potential of these compounds. In the absence of diterpenoids 1-3, H2O2 compromised mitochondrial function, decreasing mitochondrial membrane potential and ATP levels, increasing caspase-3 activity, and disrupting cytosolic and mitochondrial calcium homeostasis. However, treatment with the diterpenoids, prior to H2O2, prevented these mitochondrial perturbations. In particular, 1 and 3 were the most effective compounds in protecting mitochondrial function against H2O2-induced oxidative stress in U373-MG, whereas all three diterpenoids studied were significantly active against PC12 cells. Since consistent evidence has demonstrated the contribution of H2O2 on both progression and pathological development of several human diseases associated with mitochondrial function and oxidative stress responses, compounds 1-3 are worthy of further investigation.

Journal ArticleDOI
TL;DR: The study used the most elementary product of exercise physiology, lactate, to mimic exercise and found that lactate administered to resting mice produced many of the same benefits to brain mitochondria density found during extensive exercise, linked to the observed benefits of pre-conditioning treatments.
Abstract: The case for exercise in brain health is continuing to deepen to the point where it seems the weight room is as critical for brain function as it is for building muscle mass. Increased cardiovascular function, improved psychological profile, increased neurotrophic factors and neurogenesis are but a few of the factors linked to the benefits of vigorous exercise. A mechanistic understanding of how exercise can bring about such a pleotrophic range of changes has remained elusive prior to the study by Swerdlow and colleagues published in this issue of Journal of Neurochemistry (Lezi et al. 2013). Insightfully, these investigators used the most elementary product of exercise physiology, lactate, to mimic exercise. The authors found that lactate administered to resting mice produced many of the same benefits to brain mitochondria density found during extensive exercise. This elegant and simple approach opens exercise benefits to pharmacological intervention, possibly with lactate analogues if not lactate itself. It also offers the hope that exercise mimetics can help those who cannot sustain vigorous exercise. Even more significantly, the findings link exercise to the observed benefits of pre-conditioning treatments. High lactate levels are usually considered a negative metabolic modulator, yet in Swerdlow’s study the result indicates an increase in metabolic capacity. This apparent paradox, pre-conditioning, is a phenomenon whereby a sub-lethal condition protects against a subsequent potential lethal condition by stimulating endogenous adaptive and pro-survival events. As a matter of fact, hypoxia, as well as mitochondrial modulators such as cyanide, was shown to protect brain endothelial and neuronal cells against diabetes-mediated deleterious effects and other injurious conditions (Correia et al., 2011, 2012). However, an intriguing question can arise: what is the common denominator that explains the similar brain protective effects exerted by extensive exercise, exogenous lactate administration, and the preconditioning phenomenon? Despite the fact that at the end of animal treatments no significant alterations in hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels were observed, we strongly believe that this transcription factor may trigger the initial protective response mediated by extensive exercise and exogenous lactate administration. And why HIF-1α? First and foremost, the abovementioned conditions (exercise, lactate and preconditioning) per se are able to activate HIF-1α (Ameln et al. 2005, O’Hagan et al. 2009, De Saedeleer et al. 2012, Correia et al. 2011). Secondly, the metabolic switch from mitochondrial respiration towards glycolysis, in order to favor lactate production, is driven by HIF-1α. Third, recent advances in HIF-1α biology have revealed that the function of this fascinating transcription factor in the brain is not restricted to the regulation of energy metabolism; it also plays a role in the orchestration of several vital processes for normal brain functioning, including erythropoiesis, angiogenesis and neurogenesis. Lastly, HIF-1α is a major piece that integrates the mitochondrial puzzle, being involved in the coordination of many aspects of mitochondrial life cycle and transport. For instance, HIF-1α regulates mitochondrial fusion-fission events, autophagy, and mitochondrial transport and distribution in neurons by favoring the mitochondrial trafficking in the anterograde direction. Interestingly, HIF-1α also facilitates mitochondrial biogenesis (Correia et al. 2011, 2013). Within this scenario, further studies focusing on the dynamic behavior of HIF-1α gene expression during extensive exercise and lactate treatment as well as the genetic manipulation of HIF-1α expression are required to help shed light on the mechanistic basis underlying the brain protective effects shared by exercise and exogenous lactate administration.