scispace - formally typeset
Search or ask a question

Showing papers by "Pauli Paasonen published in 2015"


Journal ArticleDOI
TL;DR: Investigating the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production.
Abstract: Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

332 citations


Journal ArticleDOI
TL;DR: The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total anthropogenic radiative forcing than was reported in 2005 from the previous assessment report.
Abstract: Climate change and air pollution are critical environmental issues both in the here and now and for the coming decades. A recent OECD report found that unless action is taken, air pollution will be the largest environmental cause of premature death worldwide by 2050. Already, air pollution levels in Asia are far above acceptable levels for human health, and even in Europe, the vast majority of the urban population was exposed to air pollution concentrations exceeding the EU daily limit values, and especially the stricter WHO air quality guidelines in the past decade. The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total (from 1750 to the present) anthropogenic radiative forcing (RF) than was reported in 2005 from the previous assessment report.

315 citations


Journal ArticleDOI
TL;DR: In this paper, the role of lowvolatility organic vapors in atmospheric new particle formation in urban Beijing is investigated, and several representations for the nucleation theories involving sulfuric acid and organic molecules are evaluated.

49 citations


Journal ArticleDOI
TL;DR: In this article, the authors present budget calculations of HONO based on simultaneous measurements of all relevant species, including HO and OH at two different measurement heights, i.e. 1 m above ground and about 2 to 3 m above the canopy, conducted in a boreal forest environment.
Abstract: . Atmospheric concentrations of nitrous acid (HONO), one of the major precursors of the hydroxyl radical (OH) in the troposphere, significantly exceed the values predicted by the assumption of a photostationary state (PSS) during daytime. Therefore, additional sources of HONO were intensively investigated in the last decades. This study presents budget calculations of HONO based on simultaneous measurements of all relevant species, including HONO and OH at two different measurement heights, i.e. 1 m above the ground and about 2 to 3 m above the canopy (24 m above the ground), conducted in a boreal forest environment. We observed mean HONO concentrations of about 6.5 × 108 molecules cm−3 (26 ppt) during daytime, more than 20 times higher than expected from the PSS of 0.2 × 108 molecules cm−3 (1 ppt). To close the budgets at both heights, a strong additional source term during daytime is required. This unidentified source is at its maximum at noon (up to 1.1 × 106 molecules cm−3 s−1, 160 ppt h−1) and in general up to 2.3 times stronger above the canopy than close to the ground. The insignificance of known gas phase reactions and other processes like dry deposition or advection compared to the photolytic decomposition of HONO at this measurement site was an ideal prerequisite to study possible correlations of this unknown term to proposed HONO sources. But neither the proposed emissions from soils nor the proposed photolysis of adsorbed HNO3 contributed substantially to the unknown source. However, the unknown source was found to be perfectly correlated to the unbalanced photolytic loss of HONO.

46 citations


Journal ArticleDOI
TL;DR: In this article, the authors present cluster formation simulations allowing more conclusions to be drawn from their data, and also compare them to recent experimental results not cited in their work, and compare their results to those of Nadykto et al.

14 citations