scispace - formally typeset
Search or ask a question

Showing papers by "Richard Dekany published in 2010"


Journal ArticleDOI
TL;DR: In this article, the first compilation of 72 core-collapse supernovae from the Palomar Transient Factory (PTF) was used to study their observed subtype distribution in dwarf galaxies compared to giant galaxies.
Abstract: We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M_r ≈ –14 mag) and including a substantial fraction (>20%) of dwarf (M_r ≥ –18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "normal" SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as "normal" SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25^(+0.3)_(–0.15) and 0.23^(+0.11)_(–0.08), respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

221 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF).
Abstract: Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about –19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ≈ 10^(10) cm^(–3)). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 M_⊙ yr^(–1)) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

197 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the discovery and follow-up observations of a Type IIn supernova, PTF 09uj, detected by the Palomar Transient Factory (PTF).
Abstract: Type-IIn supernovae (SNe), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of a Type IIn SN, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by GALEX at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a time scale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n~10^10 cm^-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 solar mass per year) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

166 citations


Journal ArticleDOI
TL;DR: In this article, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp) were presented, showing that this supernova decays exponentially with τ_d = 5 days and rivals the current record holder in speed, SN 2002bj.
Abstract: We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ_d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r = −17 mag and has mean velocities of 10,000 km s^(−1). Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16M_⊙. If powered by Nickel, we show that the Nickel mass must be very small (≈0.02 M_⊙) and that the supernova quickly becomes optically thin to γ -rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a “.Ia” explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

155 citations


Journal ArticleDOI
TL;DR: In this paper, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp) were presented, showing that this supernova decays exponentially with tau_d=5 days, and rivals the current record holder in speed, SN 2002bj.
Abstract: We present the discovery, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with tau_d=5 days, and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r=-17mag and has mean velocities of 10,000 km/s. Our light curve modeling suggests a radioactivity powered event and an ejecta mass of 0.16 Msun. If powered by Nickel, we show that the Nickel mass must be very small (0.02 Msun) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of Aluminum or Helium is present. If Aluminum is present, we speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If Helium is present, all observables of SN 2010X are consistent with being a thermonuclear Helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1-day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

130 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented pre-and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722).
Abstract: We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722). Prior to this outburst, LkHa 188-G4 was classified as a classical T Tauri star on the basis of its optical emission-line spectrum superposed on a K8-type photosphere, and its photometric variability. The mid-infrared spectral index of LkHa 188-G4 indicates a Class II-type object. LkHa 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of > 3 mag on a time scale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (i) an increase in brightness by > 4 mag, (ii) a bright optical/near-infrared reflection nebula appeared, (iii) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra resemble those of late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHa 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified classical T Tauri star LkHa 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.

111 citations


Journal ArticleDOI
TL;DR: The discovery of PTF10fqs, a transient in the luminosity gap between novae and supernovae, was reported in this paper, where the authors reported that the explosion signature (the light curve and spectra) is overall similar to that of M85OT2006-1, SN2008S and NGC300OT.
Abstract: The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of Mr = -12.3, red color (g-r = 1.0) and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H (930 km/s) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to thatof M85OT2006-1, SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities (10,000 km/s) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring and statistics (e.g. disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

80 citations


Journal ArticleDOI
TL;DR: In this article, the A5V star Alcor has an M3-M4 dwarf companion, as evidenced by a novel astrometric technique, which combined with adaptive optics coronagraphy allowed for the detection and spectrophotometric characterization of the point source at a contrast of ~6 J- and H-band magnitudes and separation of 1'' from the primary star.
Abstract: The A5V star Alcor has an M3-M4 dwarf companion, as evidenced by a novel astrometric technique. Imaging spectroscopy combined with adaptive optics coronagraphy allowed for the detection and spectrophotometric characterization of the point source at a contrast of ~6 J- and H-band magnitudes and separation of 1'' from the primary star. The use of an astrometric pupil plane grid allowed us to determine the projected separations between the companion and the coronagraphically occulted primary star to ≤3 mas precision at two observation epochs. Our measurements demonstrate common parallactic and proper motion over the course of 103 days, significantly shorter than the period of time needed for most companion confirmations through proper motion measurements alone. This common parallax method is potentially more rigorous than common proper motion, ensuring that the neighboring bodies lie at the same distance, rather than relying on the statistical improbability that two objects in close proximity to each other on the sky move in the same direction. The discovery of a low-mass (~0.25 M_☉) companion around a bright (V = 4.0 mag), nearby (d= 25 pc) star highlights a region of binary star parameter space that to date has not been fully probed.

66 citations


Journal ArticleDOI
TL;DR: In this article, the Project 1640 speckle suppression pipeline (PSSP) was proposed to suppress the intensity of residual contaminating light in close angular proximity to target stars.
Abstract: Project 1640 is a high-contrast imaging instrument recently commissioned at Palomar observatory. A combination of a coronagraph with an integral field spectrograph (IFS), Project 1640 is designed to detect and characterize extrasolar planets, brown dwarfs, and circumstellar material orbiting nearby stars. In this paper, we present our data processing techniques for improving upon instrument raw sensitivity via the removal of quasi-static speckles. Our approach utilizes the chromatic image diversity provided by the IFS in combination with the locally-optimized combination of images (LOCI) algorithm to suppress the intensity of residual contaminating light in close angular proximity to target stars. We describe the Project 1640 speckle suppression pipeline (PSSP) and demonstrate the ability to detect companions with brightness comparable to and below that of initial speckle intensities using on-sky commissioning data. Our preliminary results indicate that suppression factors of at least one order of magnitude are consistently possible, reaching $5\sigma$ contrast levels of $2.1\times10^{-5}$ at $1\arcsec$ in the H-band in 20 minutes of on-source integration time when non-common-path errors are reasonably well-calibrated. These results suggest that near-infrared contrast levels of order $\approx10^{-7}$ at subarcsecond separations will soon be possible for Project 1640 and similarly designed instruments that receive a diffraction-limited beam corrected by adaptive optics (AO) systems employing deformable mirrors with high actuator-density.

61 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of a faint stellar companion to the A3V star ζ Virginis, which is ~7 mag fainter than its host star in the H band.
Abstract: Through the combination of high-order adaptive optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star ζ Virginis. This companion is ~7 mag fainter than its host star in the H band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168^(+0.012) _(–0.016) M_☉, giving a mass ratio for this system q = 0.082^(+0.007)_(–0.008). Assuming the two objects are coeval, this mass suggests an M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semimajor axis to be ≳24.9 AU, the period ≳124 yr, and eccentricity ≳0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.

52 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of a faint stellar companion to the A3V star zeta Virginis, which is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its hoststar.
Abstract: Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168+/-.016 solar masses, giving a mass ratio for this system q = 0.082. Assuming the two objects are coeval, this mass suggests a M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semi-major axis to be greater than 24.9 AU, the period > 124$ yrs, and eccentricity > 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO).
Abstract: We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of ΔK ~ 2.3 for separations between 1.2λ/D-4λ/D and ΔK ~ 1.4 at 2/3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored.

Proceedings ArticleDOI
TL;DR: The Palomar Transient Factory (PTF) as mentioned in this paper is a fully-automated, wide-field survey conducting a systematic exploration of the optical transient sky, which is performed using a new 8.1 square degree, 101 megapixel camera installed on the 48-inch Samuel Oschin Telescope.
Abstract: The Palomar Transient Factory (PTF) is a new fully-automated, wide-field survey conducting a systematic exploration of the optical transient sky. The transient survey is performed using a new 8.1 square degree, 101 megapixel camera installed on the 48-inch Samuel Oschin Telescope at Palomar Observatory. The PTF Camera achieved first light at the end of 2008, completed commissioning in July 2009, and is now in routine science operations. The camera is based on the CFH12K camera, and was extensively modified for use on the 48-inch telescope. A field-flattening curved window was installed, the cooling system was re-engineered and upgraded to closed-cycle, custom shutter and filter exchanger mechanisms were added, new custom control software was written, and many other modifications were made. We here describe the performance of these new systems during the first year of Palomar Transient Factory operations, including a detailed and long term on-sky performance characterization. We also describe lessons learned during the construction and commissioning of the upgraded camera, the photometric and astrometric precision currently achieved with the PTF camera, and briefly summarize the first supernova results from the PTF survey.

Journal ArticleDOI
TL;DR: In this paper, the authors used adaptive optics images from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit.
Abstract: The nearby star Alpha Oph (Ras Alhague) is a rapidly rotating A5IV star spinning at ~89% of its breakup velocity. This system has been imaged extensively by interferometric techniques, giving a precise geometric model of the star's oblateness and the resulting temperature variation on the stellar surface. Fortuitously, Alpha Oph has a previously known stellar companion, and characterization of the orbit provides an independent, dynamically-based check of both the host star and the companion mass. Such measurements are crucial to constrain models of such rapidly rotating stars. In this study, we combine eight years of Adaptive Optics imaging data from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A fit was performed on the photocenter motion of this system to extract a component mass ratio. We find masses of 2.40^{0.23}_{0.37} solar masses and 0.85^{0.06}_{0.04} solar masses for Alpha Oph A and Alpha Oph B, respectively. Previous orbital studies of this system found a mass too high for this system, inconsistent with stellar evolutionary calculations. Our measurements of the host star mass are more consistent with these evolutionary calculations, but with slightly higher uncertainties. In addition to the dynamically-derived masses, we use IJHK photometry to derive a model-based mass for Alpha Oph B, of 0.77 +/- 0.05 solar masses marginally consistent with the dynamical masses derived from our orbit. Our model fits predict a periastron passage on 2012 April 19, with the two components having a ~50 milliarcsec separation from March to May 2012. A modest amount of interferometric and radial velocity data during this period could provide a mass determination of this star at the few percent level.

Proceedings ArticleDOI
TL;DR: In this article, the authors describe the lab characterization of the new 3,388-actuator deformable mirror (DM3388) produced by Xinetics, Inc. for the PALM-3000 adaptive optics (AO) system under development by Jet Propulsion Laboratory and Caltech Optical Observatories.
Abstract: We describe the lab characterization of the new 3,388-actuator deformable mirror (DM3388) produced by Xinetics, Inc. for the PALM-3000 adaptive optics (AO) system1 under development by Jet Propulsion Laboratory and Caltech Optical Observatories. This square grid 66-by-66 actuator mirror has the largest number of actuators of any deformable mirror currently available and will enable high-contrast imaging for direct exoplanet imaging science at the Palomar 200" diameter Hale Telescope. We present optical measurements of the powered and unpowered mirror surface, influence functions, linearity of the actuators, and creep of the actuators. We also quantify the effect of changes in humidity.

Proceedings ArticleDOI
TL;DR: The Oxford SWIFT spectrograph as mentioned in this paper was designed to operate as a facility instrument at the 200-inch Hale Telescope on Palomar Mountain, in conjunction with the PALAO (and its upgrade to PALM3000).
Abstract: The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235";, 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.

Journal ArticleDOI
TL;DR: In this paper, the first compilation of 72 core-collapse supernovae from the Palomar Transient Factory (PTF) was used to study their observed subtype distribution in dwarf galaxies compared to giant galaxies.
Abstract: We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M_r ~ -14 mag) and including a substantial fraction (>20%) of dwarf (M_r >= -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while "normal" SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as "normal" SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25_{-0.15}^{+0.3} and 0.23_{-0.08}^{+0.11}, respectively; 1 sigma uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

Proceedings ArticleDOI
TL;DR: The concept study and baseline concept design of the On-Instrument WaveFront Sensors and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams are reported on.
Abstract: The InfraRed Imaging Spectrograph (IRIS) is a first light client science instrument for the TMT observatory that operates as a client of the NFIRAOS facility multi-conjugate adaptive optics system. This paper reports on the concept study and baseline concept design of the On-Instrument WaveFront Sensors (OIWFS) and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams. This includes work on system engineering, structural and thermal design, sky coverage modeling, patrol geometry, probe optics and mechanics design, camera design, and controls design.

Journal ArticleDOI
TL;DR: In this article, the authors presented a close companion search around sixteen known early-L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics.
Abstract: We present a close companion search around sixteen known early-L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics. The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of Delta_K ~ 2.3 for separations between 1.2 - 4 lambda/D, and Delta_K ~ 1.4 at (2/3)lambda/D. We present four candidate binaries detected with moderate to high confidence (90-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with laser guide star adaptive optics at Palomar. Several new techniques for the analysis of aperture masking data in the low signal to noise regime are explored.

Proceedings ArticleDOI
01 Jan 2010
TL;DR: The IRIS On-Instrument Wavefront Sensors (OIWFS) as mentioned in this paper is a collab-orative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams.
Abstract: We report on the concept study of the IRIS On-Instrument WaveFront Sensors (OIWFS), a collab- orative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams. Our concept study includes work on the system design of the low order natural guide star wavefront sensors located on-instrument within IRIS as well as the NFIRAOS-IRIS interface. The OIWFS study involves patrol geometry, detector alternatives, sky coverage modeling, acquisition, guiding, and dithering scenarios, and interfaces with NFIRAOS, IRIS, and the TMT observatory. It also includes work on probe optics, mechanics, and controls, detector arrays and controllers, instrument rotator and cable wrap, and thermal and structural design of the OIWFS enclosure.

Proceedings ArticleDOI
TL;DR: It is demonstrated that determination of the jointly optimized LGS pointing angle and tip-tilt wavefront sensor (WFS) integration time can improve performance metrics by factors of several, particularly for faintest NGS operation.
Abstract: Experience with the current generation of astronomical single laser guide star (LGS) adaptive optics (AO) systems has demonstrated system performance that is often limited by residual tip-tilt errors induced by the paucity of bright tip-tilt natural guide stars (NGS). To overcome this limitation, we are developing a new generation of tip-tilt sensors that will operate at near-infrared wavelengths where the NGS is sharpened to the diffraction limit. To optimize performance, single LGS AO systems utilizing sharpened tip-tilt NGS should generally not point their LGS directly toward their science target. Rather, optimal performance for wide sky coverage is obtained by offsetting LGS pointing along a radius connecting the science target and the tip-tilt NGS. We demonstrate that determination of the jointly optimized LGS pointing angle and tip-tilt wavefront sensor (WFS) integration time can improve performance metrics by factors of several, particularly for faintest NGS operation. We find the LGS offset should be as much as 1/2 the distance to the NGS to maximize Strehl ratio at near-infrared wavelengths and ≈ 1/4 the distance to the NGS to maximize ensquared energy, with lesser off-pointing for brighter NGS. Future AO systems may benefit from predictive determination of optimal LGS offsetting, based upon changing atmospheric conditions and observational geometries.

Proceedings ArticleDOI
TL;DR: In this paper, the authors report on the concept study and baseline concept design of the On-Instrument WaveFront Sensors (OIWFS) and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech and TMT AO and Instrument teams.
Abstract: The InfraRed Imaging Spectrograph (IRIS) is a first light client science instrument for the TMT observatory that operates as a client of the NFIRAOS facility multi-conjugate adaptive optics system. This paper reports on the concept study and baseline concept design of the On-Instrument WaveFront Sensors (OIWFS) and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams. This includes work on system engineering, structural and thermal design, sky coverage modeling, patrol geometry, probe optics and mechanics design, camera design, and controls design.