scispace - formally typeset
Search or ask a question

Showing papers by "Sam J. Wilson published in 2021"


Journal ArticleDOI
TL;DR: The SARS-CoV-2 reverse genetics toolkit as discussed by the authors can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids).
Abstract: The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.

124 citations


Journal ArticleDOI
TL;DR: In this paper, a single mutation in RNA-dependent RNA polymerase (NSP12) was identified at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity.
Abstract: Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.

81 citations


Posted ContentDOI
10 Feb 2021-bioRxiv
TL;DR: In this article, the E802D mutation in the RNA-dependent RNA polymerase was found to improve the sensitivity of SARS-CoV-2 to Remdesivir (RDV) for COVID-19 patients.
Abstract: Remdesivir (RDV) is used widely for COVID-19 patients despite varying results in recent clinical trials Here, we show how serially passaging SARS-CoV-2 in vitro in the presence of RDV selected for drug-resistant viral populations We determined that the E802D mutation in the RNA-dependent RNA polymerase was sufficient to confer decreased RDV sensitivity without affecting viral fitness Analysis of more than 200,000 sequences of globally circulating SARS-CoV-2 variants show no evidence of widespread transmission of RDV-resistant mutants Surprisingly, we also observed changes in the Spike (ie, H69 E484, N501, H655) corresponding to mutations identified in emerging SARS-CoV-2 variants indicating that they can arise in vitro in the absence of immune selection This study illustrates SARS-CoV-2 genome plasticity and offers new perspectives on surveillance of viral variants One Sentence Summary SARS-CoV-2 drug resistance & genome plasticity

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions, and propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less selftargeted sequence space.
Abstract: Antiviral defenses can sense viral RNAs and mediate their destruction. This presents a challenge for host cells since they must destroy viral RNAs while sparing the host mRNAs that encode antiviral effectors. Here, we show that highly upregulated interferon-stimulated genes (ISGs), which encode antiviral proteins, have distinctive nucleotide compositions. We propose that self-targeting by antiviral effectors has selected for ISG transcripts that occupy a less self-targeted sequence space. Following interferon (IFN) stimulation, the CpG-targeting antiviral effector zinc-finger antiviral protein (ZAP) reduces the mRNA abundance of multiple host transcripts, providing a mechanistic explanation for the repression of many (but not all) interferon-repressed genes (IRGs). Notably, IRGs tend to be relatively CpG rich. In contrast, highly upregulated ISGs tend to be strongly CpG suppressed. Thus, ZAP is an example of an effector that has not only selected compositional biases in viral genomes but also appears to have notably shaped the composition of host transcripts in the vertebrate interferome.

12 citations


Posted ContentDOI
09 May 2021-medRxiv
TL;DR: In this article, the authors used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2.
Abstract: Cell autonomous antiviral defenses can inhibit the replication of viruses and reduce transmission and disease severity. To better understand the antiviral response to SARS-CoV-2, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that while some people can express a prenylated OAS1 variant, that is membrane-associated and blocks SARS-CoV-2 infection, other people express a cytosolic, nonprenylated OAS1 variant which does not detect SARS-CoV-2 (determined by the splice-acceptor SNP Rs10774671). Alleles encoding nonprenylated OAS1 predominate except in people of African descent. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response. Remarkably, approximately 55 million years ago, retrotransposition ablated the OAS1 prenylation signal in horseshoe bats (the presumed source of SARS-CoV-2). Thus, SARS-CoV-2 never had to adapt to evade this defense. As prenylated OAS1 is widespread in animals, the billions of people that lack a prenylated OAS1 could make humans particularly vulnerable to the spillover of coronaviruses from horseshoe bats.

5 citations


Journal ArticleDOI
28 Sep 2021-Science
TL;DR: In this article, the authors used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2.
Abstract: Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response.

3 citations


Journal ArticleDOI
TL;DR: In this article, the synthesis of enantiomerically enriched (S)- and (R)-PF74 and further enrichment of the samples (≥98%) using chiral HPLC resolution were described.
Abstract: PF74 is a capsid-targeting inhibitor of HIV replication that effectively perturbs the highly sensitive viral uncoating process. A lack of information regarding the optical purity (enantiomeric excess) of the single stereogenic centre of PF74 has resulted in ambiguity as to the potency of different samples of this compound. Herein is described the synthesis of enantiomerically enriched (S)- and (R)-PF74 and further enrichment of the samples (≥98%) using chiral HPLC resolution. The biological activities of each enantiomer were then evaluated, which determined (S)-PF74 (IC50 1.5 µM) to be significantly more active than (R)-PF74 (IC50 19 µM). Computational docking studies were then conducted to rationalise this large discrepancy in activity, which indicated different binding conformations for each enantiomer. The binding energy of the conformation adopted by the more active (S)-PF74 (ΔG = −73.8 kcal/mol) was calculated to be more favourable than the conformation adopted by the less active (R)-enantiomer (ΔG = −55.8 kcal/mol) in agreement with experimental observations.