scispace - formally typeset
S

Sergei V. Kalinin

Researcher at Oak Ridge National Laboratory

Publications -  1069
Citations -  43341

Sergei V. Kalinin is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Ferroelectricity & Piezoresponse force microscopy. The author has an hindex of 95, co-authored 999 publications receiving 37022 citations. Previous affiliations of Sergei V. Kalinin include Southern Illinois University Carbondale & Louisiana State University.

Papers
More filters
Journal ArticleDOI

Conduction at domain walls in oxide multiferroics

TL;DR: The observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3) shows that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall.
Journal ArticleDOI

Nanoscale mapping of ion diffusion in a lithium-ion battery cathode

TL;DR: The spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO(2) is probed at a resolution of ∼100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries.
Journal ArticleDOI

Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces

TL;DR: In this paper, the authors derived analytical descriptions of the complex interactions between a small tip and ferroelectric surface for several sets of limiting conditions, and used these results to construct ''piezoresponse contrast mechanism maps'' that correlate the imaging conditions with the PFM contrast mechanisms.
Journal ArticleDOI

Dual-frequency resonance-tracking atomic force microscopy

TL;DR: In this article, a dual-excitation method for resonant-frequency tracking in scanning probe microscopy based on amplitude detection is developed, which allows the cantilever to be operated at or near resonance for techniques where standard phase locked loops are not possible.
Journal ArticleDOI

Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

TL;DR: The observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping opens the door to merging magnetoelectrics and Magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic Bi FeO3.