scispace - formally typeset
Search or ask a question
Author

Sorin Cristoloveanu

Bio: Sorin Cristoloveanu is an academic researcher from Los Angeles Harbor College. The author has contributed to research in topics: Silicon on insulator & MOSFET. The author has an hindex of 48, co-authored 689 publications receiving 11384 citations. Previous affiliations of Sorin Cristoloveanu include Commissariat à l'énergie atomique et aux énergies alternatives & STMicroelectronics.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, the authors discuss methods of forming silicon-on-insulator (SOI) wafers, their physical properties, and the latest improvements in controlling the structure parameters.
Abstract: Silicon-on-insulator (SOI) wafers are precisely engineered multilayer semiconductor/dielectric structures that provide new functionality for advanced Si devices. After more than three decades of materials research and device studies, SOI wafers have entered into the mainstream of semiconductor electronics. SOI technology offers significant advantages in design, fabrication, and performance of many semiconductor circuits. It also improves prospects for extending Si devices into the nanometer region (<10 nm channel length). In this article, we discuss methods of forming SOI wafers, their physical properties, and the latest improvements in controlling the structure parameters. We also describe devices that take advantage of SOI, and consider their electrical characteristics.

743 citations

Journal ArticleDOI

[...]

TL;DR: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion as discussed by the authors.
Abstract: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion. This original method of transistor operation offers excellent device performance, in particular great increases in subthreshold slope, transconductance, and drain current. A simulation program and experiments on SIMOX structures are used to study the new device.

710 citations

Book

[...]

30 Jun 1995
Abstract: 1. Introduction. 2. Methods of Forming SOI Wafers. 3. SOI Devices. 4. Wafer Screening Techniques. 5. Transport Measurements. 6. SUS Capacitor Based Characterization Techniques. 7. Diode Measurements. 8. Transistor Characteristics. 9. Transistor Based Characterization Techniques. 10. Monitoring the Transistor Degradation. Index.

435 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the operation of 1-3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate mode (for either front or back channel), is systematically analyzed.
Abstract: The operation of 1-3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate (SG) mode (for either front or back channel), is systematically analyzed. Strong interface coupling and threshold voltage variation, a large influence of substrate depletion underneath the buried oxide, the absence of drain current transients, and degradation in electron mobility are typical effects in these ultra-thin MOSFETs. The comparison of SG and DG configurations demonstrates the superiority of DG-MOSFETs: ideal subthreshold swing and remarkably improved transconductance (consistently higher than twice the value in SG-MOSFETs). The experimental data and the difference between SG and DG modes is explained by combining classical models with quantum calculations. The key effect in ultimately thin DG-MOSFETs is volume inversion, which primarily leads to an improvement in mobility, whereas the total inversion charge is only marginally modified.

229 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the static and dynamic modes of operation as well as the main models and methods for electrical parameter extraction are presented in order to clarify the optimal conditions of operation and demonstrate the efficiency of the pseudo-MOS transistor technique for in situ characterization of SOI technologies and processes.
Abstract: The pseudo-MOS transistor (/spl Psi/-MOSFET) is a surprising and useful technique for the rapid evaluation of SOI wafers, prior to any CMOS processing. We review the static and dynamic modes of operation as well as the main models and methods for electrical parameter extraction. Selected numerical simulations are presented in order to clarify the optimal conditions of operation. Finally, practical applications are exemplified which illustrate the efficiency of the /spl Psi/-MOSFET technique for in situ characterization of SOI technologies and processes.

188 citations


Cited by
More filters
Journal Article

[...]

28,684 citations

Journal ArticleDOI

[...]

24 Feb 2012-Science
TL;DR: A bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness is reported, which has potential for high-frequency operation and large-scale integration.
Abstract: An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively Such devices have potential for high-frequency operation and large-scale integration

2,401 citations

Journal ArticleDOI

[...]

17 Nov 2011-Nature
TL;DR: Tunnels based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal–oxide–semiconductor transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.
Abstract: Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to increase the current by one order of magnitude at room temperature. Tunnel FETs avoid this limit by using quantum-mechanical band-to-band tunnelling, rather than thermal injection, to inject charge carriers into the device channel. Tunnel FETs based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal-oxide-semiconductor (CMOS) transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.

2,390 citations

Journal ArticleDOI

[...]

25 Oct 2010
TL;DR: This review introduces and summarizes progress in the development of the tunnel field- effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges.
Abstract: Steep subthreshold swing transistors based on interband tunneling are examined toward extending the performance of electronics systems. In particular, this review introduces and summarizes progress in the development of the tunnel field-effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges. The promise of the TFET is in its ability to provide higher drive current than the MOSFET as supply voltages approach 0.1 V.

1,389 citations

Journal ArticleDOI

[...]

David J. Frank1, R.H. Dennard1, E. J. Nowak1, Paul M. Solomon1, Yuan Taur1, Hon-Sum Philip Wong1 
01 Mar 2001
TL;DR: The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.
Abstract: This paper presents the current state of understanding of the factors that limit the continued scaling of Si complementary metal-oxide-semiconductor (CMOS) technology and provides an analysis of the ways in which application-related considerations enter into the determination of these limits. The physical origins of these limits are primarily in the tunneling currents, which leak through the various barriers in a MOS field-effect transistor (MOSFET) when it becomes very small, and in the thermally generated subthreshold currents. The dependence of these leakages on MOSFET geometry and structure is discussed along with design criteria for minimizing short-channel effects and other issues related to scaling. Scaling limits due to these leakage currents arise from application constraints related to power consumption and circuit functionality. We describe how these constraints work out for some of the most important application classes: dynamic random access memory (DRAM), static random access memory (SRAM), low-power portable devices, and moderate and high-performance CMOS logic. As a summary, we provide a table of our estimates of the scaling limits for various applications and device types. The end result is that there is no single end point for scaling, but that instead there are many end points, each optimally adapted to its particular applications.

1,288 citations