scispace - formally typeset
T

T. Bulik

Researcher at Polish Academy of Sciences

Publications -  95
Citations -  8273

T. Bulik is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Gravitational wave & Population. The author has an hindex of 37, co-authored 95 publications receiving 7017 citations.

Papers
More filters
Journal ArticleDOI

Advanced Virgo: a 2nd generation interferometric gravitational wave detector

Fausto Acernese, +227 more
TL;DR: Advanced Virgo as discussed by the authors is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Journal ArticleDOI

GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object

R. Abbott, +1254 more
TL;DR: In this article, the authors reported the observation of a compact binary coalescence involving a 22.2 -24.3 magnitude black hole and a compact object with a mass of 2.50 -2.67 magnitude.
Journal ArticleDOI

GW190425: Observation of a Compact Binary Coalescence with Total Mass $\sim 3.4 M_{\odot}$

B. P. Abbott, +1199 more
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 as mentioned in this paper, which is consistent with the individual binary components being neutron stars.
Journal ArticleDOI

Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S.

Felix Aharonian, +168 more
TL;DR: In this article, the authors present a measurement of the cosmic-ray electron spectrum with H.E.S. starting at 340 GeV and show no indication of a structure in the electron spectrum, but rather a power-law spectrum with spectral index of 3.0 +- 0.1 (stat.) + − 0.3 (syst.) which steepens at about 1 TeV.
Journal ArticleDOI

Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521.

R. Abbott, +1254 more
TL;DR: The GW190521 signal as mentioned in this paper is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, and shows mild evidence for spin-induced orbital precession.