scispace - formally typeset
B

Bruce Gendre

Researcher at University of Western Australia

Publications -  195
Citations -  26606

Bruce Gendre is an academic researcher from University of Western Australia. The author has contributed to research in topics: Gamma-ray burst & Afterglow. The author has an hindex of 50, co-authored 193 publications receiving 22302 citations. Previous affiliations of Bruce Gendre include University of Milan & Hoffmann-La Roche.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more
TL;DR: Advanced Virgo as mentioned in this paper is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Journal ArticleDOI

Advanced Virgo: a 2nd generation interferometric gravitational wave detector

Fausto Acernese, +227 more
TL;DR: Advanced Virgo as discussed by the authors is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

Properties of the Binary Black Hole Merger GW150914

B. P. Abbott, +987 more
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.