scispace - formally typeset
F

Francisco Hernandez Vivanco

Researcher at Monash University

Publications -  70
Citations -  14433

Francisco Hernandez Vivanco is an academic researcher from Monash University. The author has contributed to research in topics: LIGO & Gravitational wave. The author has an hindex of 39, co-authored 59 publications receiving 9957 citations. Previous affiliations of Francisco Hernandez Vivanco include Monash University, Clayton campus.

Papers
More filters
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Journal ArticleDOI

GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M O

B. P. Abbott, +1274 more
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Journal ArticleDOI

GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object

R. Abbott, +1254 more
TL;DR: In this article, the authors reported the observation of a compact binary coalescence involving a 22.2 -24.3 magnitude black hole and a compact object with a mass of 2.50 -2.67 magnitude.
Journal ArticleDOI

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

Richard J. Abbott, +1337 more
TL;DR: In this paper, the authors reported the observation of a compact binary coalescence involving a 222 −243 M ⊙ black hole and a compact object with a mass of 250 −267 M ⋆ (all measurements quoted at the 90% credible level) The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network.
Journal ArticleDOI

GW190521: A Binary Black Hole Merger with a Total Mass of 150 M

R. Abbott, +1335 more
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).