scispace - formally typeset
Search or ask a question

Showing papers by "Thomas Hickler published in 2008"


Journal ArticleDOI
TL;DR: This review proposes two main avenues to progress the understanding and prediction of the different processes occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena and concludes with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world.
Abstract: Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.

1,134 citations


Journal ArticleDOI
TL;DR: In this paper, the LPJ-GUESS dynamic vegetation model reproduces the magnitude of the NPP enhancement at temperate forest FACE experiments in temperate climates, showing that the response of forest net primary productivity to elevated CO(2) might be highly conserved across a broad range of productivities.
Abstract: in Undetermined Results from free-air CO(2) enrichment (FACE) experiments in temperate climates indicate that the response of forest net primary productivity (NPP) to elevated CO(2) might be highly conserved across a broad range of productivities. In this study, we show that the LPJ-GUESS dynamic vegetation model reproduces the magnitude of the NPP enhancement at temperate forest FACE experiments. A global application of the model suggests that the response found in the experiments might also be representative of the average response of forests globally. However, the predicted NPP enhancement in tropical forests is more than twice as high as in boreal forests, suggesting that currently available FACE results are not applicable to these ecosystems. The modeled geographic pattern is to a large extent driven by the temperature dependence of the relative affinities of the primary assimilation enzyme (Rubisco) for CO(2) and O(2). (Less)

290 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of human land-use on the global carbon cycle over the last 6,000 years was estimated using the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM).
Abstract: Humanity has become a major player within the Earth system, particularly by transforming large parts of the land surface and by altering the gaseous composition of the atmosphere. Deforestation for agricultural purposes started thousands of years ago and might have resulted in a detectable human influence on climate much earlier than the industrial revolution. This study presents a first attempt to estimate the impact of human land-use on the global carbon cycle over the last 6,000 years. A global gridded data set for the spread of permanent and non-permanent agriculture over this time period was developed and integrated within the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). The model was run with and without human land-use, and the difference in terrestrial carbon storage was calculated as an estimate of anthropogenic carbon release to the atmosphere. The modelled total carbon release during the industrial period (a.d. 1850–1990) was 148 gigatons of carbon (GtC), of which 33 GtC originated from non-permanent agriculture. For pre-industrial times (4000 b.c.–a.d. 1850), the net carbon release was 79 GtC from permanent agriculture with an additional 35 GtC from non-permanent agriculture. The modelled pre-industrial carbon release was considerably lower than would be required for a substantial influence on the climate system.

172 citations


Journal ArticleDOI
TL;DR: A new generation of large-scale, low-cost per unit area FACE experiments are proposed to identify the most CO(2)-responsive genotypes and provide starting lines for future breeding programmes to realize the potential for yield gains in the future.
Abstract: A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO(2)] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO(2)] provides a unique opportunity to increase the productivity of C(3) crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO(2) responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO(2) enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO(2)]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO(2)-responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.

167 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the potential drivers of Holocene vegetation changes recorded at four Scandinavian pollen sites, two in Sweden and two in Finland, at a time when they were largely free of anthropogenic influence.
Abstract: # 1. We investigated the potential drivers of Holocene vegetation changes recorded at four Scandinavian pollen sites, two in Sweden and two in Finland, at a time when they were largely free of anthropogenic influence. # 2. We used the generalized dynamic vegetation model LPJ-GUESS forced with climate anomaly output from an atmospheric general circulation model to simulate tree species dynamics from 10 000 years ago to the present. The model results were compared to high-resolution pollen accumulation rates gathered at the sites. # 3. Our results indicate that both the observed northern distributional limits of temperate trees, and the limits of Pinus sylvestris and Alnus incana at the tree line, are a result of millennial variations in summer and winter temperatures. The simulation of several distinct trends in species occurrence observed in the pollen record indicates that a time lag due to the slow spreading of species need not be invoked for most species. # 4. Sensitivity studies indicate that competition, natural disturbance and the magnitude of interannual variability play key roles in determining the biomass, establishment and even the presence of species near their bioclimatic limits. However, neither disturbance due to fire nor limits on establishment due to drought were likely to have been major determinants of the observed trends on the timescales considered. # 5. We were unable to limit the modelled occurrence of Picea abies at the study sites to the periods at which it was observed in the pollen records, indicating that we have still not completely understood the driving or limiting factors for Holocene changes in Picea abies abundance. # 6. Synthesis. This study shows that by combining quantitative vegetation reconstructions with a modern, process-based dynamic vegetation model, we may gain new insights into the potential biotic and abiotic drivers of Holocene vegetation dynamics, and their relative importance. This knowledge will be crucial in enabling us to assess more confidently the response of northern European vegetation to future climate change.

147 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden.
Abstract: We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.

112 citations


Journal ArticleDOI
TL;DR: A projection of future emissions includes a direct CO(2)-isoprene inhibition, which has the potential to offset the stimulation of emissions that could be expected from warmer temperatures and from the increased productivity and leaf area of emitting vegetation.
Abstract: Emissions of isoprene from terrestrial vegetation are known to affect atmospheric chemical properties, like its oxidation capacity or the concentration of tropospheric ozone. The latter is of concern, since besides being a potent greenhouse gas, O(3) is toxic for humans, animals, and plants even at relatively low concentrations. Isoprene-emitting forests in the vicinity of NO(x) pollution sources (like cities) can contribute considerably to O(3) formation, and to the peak concentrations observed during hot summer weather. The biogenic contribution to O(3) concentrations is generally thought to increase in a future, warmer climate--pushing values beyond health thresholds possibly even more frequently and over larger areas--given that emissions of isoprene are highly temperature-dependent but also because of the CO(2) fertilisation of forest productivity and leaf growth. Most projections of future emissions, however, do not include the possible CO(2)-inhibition of leaf isoprene metabolism. We explore the regional distribution of emissions from European woody vegetation, using a mechanistic isoprene-dynamic vegetation model framework. We investigate the interactive effects of climate and CO(2) concentration on forest productivity, species composition, and isoprene emissions for the periods 1981-2000 and 2081-2100. Our projection of future emissions includes a direct CO(2)-isoprene inhibition. Across the model domain, we show that this direct effect has the potential to offset the stimulation of emissions that could be expected from warmer temperatures and from the increased productivity and leaf area of emitting vegetation. Changes in forest species composition that may result from climate change can play a substantial additional role in a region's future emissions. Changes in forest area or area planted in woody biofuels in general are not noticeable in the overall European forest isoprene budget, but--as was the case for changes in species composition--may substantially affect future projections in some regions of the continent.

86 citations


Journal ArticleDOI
TL;DR: Traditional proxies for water availability with changes in soil water predicted by a process-based ecosystem model, which simulates changes in vegetation structure and functioning, including CO2 physiological effects are compared.
Abstract: The direct effects of CO2 level changes on plant water availability are usually ignored in plant habitat models. We compare traditional proxies for water availability with changes in soil water (fAWC) predicted by a process-based ecosystem model, which simulates changes in vegetation structure and functioning, including CO2 physiological effects. We modelled current and future habitats of 108 European tree species using ensemble forecasting, comprising six habitat models, two model evaluation methods and two climate change scenarios. The fAWC models' projections are generally more conservative. Potential habitats shrink significantly less for boreo-alpine and alpine species. Changes in vegetation functioning and CO2 on plant water availability should therefore be taken into account in plant habitat change projections.

47 citations



Journal ArticleDOI
TL;DR: The recently concluded EU funded project MACIS as discussed by the authors reviewed observed and projected climate change impacts on biodiversity and developed methods to assess future impacts of climate change on biodiversity including the identification of policy options to prevent and minimise these impacts.
Abstract: The recently finished EU funded project MACIS reviewed observed and projected climate change impacts on biodiversity. It assessed mitigation and adaptation options. It also reviewed and developed methods to assess future impacts of climate change on biodiversity including the identification of policy options to prevent and minimise these impacts.

16 citations


Journal ArticleDOI
TL;DR: This work analyzes which countries and regions will suffer the most severe changes to their natural ecosystems and biodiversity, and how the responsibility for those changes is distributed across the world.
Abstract: Global anthropogenic climate change is contributing to the considerable economic imbalance between rich and poor nations. The changing climate will inevitably influence natural resources, but it is the poorest countries—where humans rely most directly on natural systems for their livelihoods—that are expected to experience the greatest changes. Accordingly, the resources, economies and societies of these nations are likely to be most severely affected, despite the fact that they are least able to cope with—and are least responsible for—climate change itself. Here, we analyse which countries and regions will suffer the most severe changes to their natural ecosystems and biodiversity, and how the responsibility for those changes is distributed across the world. > The changing climate will inevitably influence natural resources, but it is the poorest countries […] that are expected to experience the greatest changes On a broad scale, geographic variations in temperature, rainfall and seasonality determine ecosystem productivity and species diversity. Ecosystems therefore respond to changes in temperature and precipitation, which inevitably have an impact on biodiversity. Recent shifts in the distributions of various species towards the poles and to higher altitudes (Parmesan & Yohe, 2003; Root et al , 2003; Walther et al , 2005; Wilson et al , 2005; Franco et al , 2006; Hickling et al , 2006), and the extinction of more than 1% of all amphibian species (Pounds et al , 2006), indicate that climate change is already having a major impact on biodiversity. Climatic changes are also expected to alter the distributions of most types of vegetation (Cramer et al , 2001; Scholtze et al , 2006) and there is already evidence of a shift from deciduous woodland to evergreen forest in part of southern Europe (Walther et al , 2002). Such changes will have implications both for biodiversity (Malcolm et al , 2006) and for the humans …