scispace - formally typeset
Search or ask a question

Showing papers by "Todd R. Golub published in 2023"


Journal ArticleDOI
TL;DR: Tabrizi et al. as discussed by the authors used an intravenous DNA-binding priming agent that is given 2 hours prior to a blood draw to recover more ctDNA, boosting the detection of tumor mutations in plasma by 19-fold and increasing sensitivity from 6% to 84.
Abstract: Liquid biopsies using cell-free DNA (cfDNA) enable non-invasive detection and characterization of disease. Advances in sequencing methods have significantly improved the performance of liquid biopsies. Yet, despite these advances, sensitivity remains a fundamental challenge. In oncology, circulating tumor DNA (ctDNA) screening tests only detect 20-40% of stage I tumors and tests for minimal residual disease have only 25-50% sensitivity after surgery. The major barrier to better sensitivity is the intrinsic low level of ctDNA in plasma. Physical absence of tumor DNA molecules in a blood draw from a patient with low disease burden will result in a negative test, no matter the sensitivity of the ex vivo detection platform. To overcome this barrier, here we report a first-in-class intravenous DNA-binding priming agent that is given 2 hours prior to a blood draw to recover more ctDNA, boosting the detection of tumor mutations in plasma by 19-fold and increasing sensitivity from 6% to 84%. Given the rapid clearance of cfDNA from circulation, we reasoned that a priming agent that could bind and protect cfDNA from clearance could increase the tumor DNA recovered from plasma. We selected monoclonal antibodies (mAbs) as the class of molecules to use as cfDNA protectors given their persistence in circulation and ease of engineering. We identify a mAb that binds double-stranded DNA (dsDNA) and find on electrophoretic mobility shift assays that it binds both free and histone-bound dsDNA, the constituent components of cfDNA. We then demonstrate that this mAb can delay the clearance of dsDNA from plasma in vivo through co-injection of the mAb with free- and histone-bound dsDNA in mice. We further identify interactions with Fc-gamma-receptors as a key mediator of early clearance of dsDNA bound to the priming mAb. To address this early clearance and limit potential immune interactions, we engineer the mAb to abrogate its Fc effector function. The engineered variant decreases clearance of injected dsDNA by over 150-fold at one hour post-injection compared to dsDNA alone. We next evaluate the effect of our priming mAb on cancer detection. We use a targeted panel against 1,822 mutations in the MC26 murine colon carcinoma cell line to detect tumor mutations in the plasma of tumor bearing mice. The priming mAb results in 19-fold higher recovery of tumor DNA molecules compared to a control mAb. This improved recovery leads to detection of 77% of targeted sites in plasma compared to only 15% in the control group. In sensitivity analyses, higher recovery of mutant molecules improves sensitivity for cancer detection from 6% to 84% at 0.001% tumor fraction. In summary, we demonstrate an approach to overcome a key barrier in liquid biopsies. We envision that similar to contrast agents in clinical imaging, priming agents could significantly boost the diagnostic sensitivity of liquid biopsies and enable further applications across biomedicine. Citation Format: Shervin Tabrizi, Carmen Martin-Alonso, Kan Xiong, Timothy Blewett, Sainetra Sridhar, Zhenyi An, Sahil Patel, Sergio Rodriguez-Aponte, Christopher Naranjo, Douglas Shea, Todd Golub, Sangeeta N. Bhatia, Viktor A. Adalsteinsson, J. Christopher Love. A DNA-binding priming agent protects cell-free DNA and improves the sensitivity of liquid biopsies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3371.

1 citations


Journal ArticleDOI
TL;DR: Concatenating original duplex for error correction (CODEC) as mentioned in this paper was proposed to detect biologically significant mutations from single DNA molecules using up to 100-fold fewer reads than duplex sequencing.
Abstract: Abstract Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules (‘single duplexes’) to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10 −8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.

1 citations


Posted ContentDOI
14 Jan 2023-bioRxiv
TL;DR: In this article , an intravenous DNA-binding priming agent given 2 hours prior to a blood draw was used to attenuate the clearance of cfDNA in vivo, which improved the sensitivity of existing DNA-based cancer testing using blood biopsies.
Abstract: Blood-based, or “liquid,” biopsies enable minimally invasive diagnostics but have limits on sensitivity due to scarce cell-free DNA (cfDNA). Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo. Here, we sought to augment the level of circulating tumor DNA (ctDNA) detected in a blood draw by attenuating the clearance of cfDNA in vivo. We report a first-in-class intravenous DNA-binding priming agent given 2 hours prior to a blood draw to recover more cfDNA. The DNA-binding antibody minimizes nuclease digestion and organ uptake of cfDNA, decreasing its clearance at 1 hour by over 150-fold. To improve plasma persistence and limit potential immune interactions, we abrogated its Fc-effector function. We found that it protects GC-rich sequences and DNase-hypersensitive sites, which are ordinarily underrepresented in cfDNA. In tumor-bearing mice, priming improved tumor DNA recovery by 19-fold and sensitivity for detecting cancer from 6% to 84%. These results suggest a novel method to enhance the sensitivity of existing DNA-based cancer testing using blood biopsies.

1 citations


Journal ArticleDOI
TL;DR: The TBCRC 030 trial as mentioned in this paper was a phase II randomized study of 12 weeks of NAT single agent cisplatin or paclitaxel for stage II-III TNBC, followed by surgery.
Abstract: Background. Patients (pts) with early triple negative breast cancer (eTNBC) are at increased risk of breast cancer recurrence and death. Recent studies have focused on escalation of therapy, with current treatment standard of at least five drugs – and associated toxicities - for eTNBC. Though presence of residual disease after neoadjuvant therapy (NAT) as measured by residual cancer burden (RCB) helps guide addition of adjuvant treatment, more effective tools to tailor therapy are limited. Persistence of circulating tumor DNA (ctDNA) in the setting of residual disease is associated with high risk of distant recurrence. However, more sensitive minimal residual disease (MRD) assays are needed to potentially guide optimization of systemic therapy. Methods. TBCRC 030 is a phase II randomized study of 12 weeks of NAT single agent cisplatin or paclitaxel for stage II-III TNBC, followed by surgery. The primary objective of the parent study was to correlate baseline biomarker for homologous recombination deficiency and RCB by study arm. From this group, responders (RCB 0/1) and non-responders (RCB 2/3) from both study arms who did not receive additional NAT prior to surgery were selected for analysis from the study cohort, matched on baseline nodal status and tumor size. As a post hoc study amendment, available pts were followed for event free survival (EFS). Plasma samples were collected prior to treatment initiation (W0), at three weeks (W3), and at twelve weeks, prior to surgery (W12). Whole genome sequencing (WGS) was performed on primary tumor tissue to identify somatic mutations and design for each pt a tumor-informed, ctDNA assay tracking up to 1000 mutations to detect MRD. Detection limit was computed for each tested sample as previously described. For each sample assayed, we report tumor fraction (TFx) when MRD was detected and the detection limit at 90% power when MRD was not detected. Results. Of 139 study pts, 68 had complete tissue and plasma samples and no receipt of additional NAT. Of these, 22 were responders. These responders, and 22 matched non-responders were identified for analysis. Data from 22 pts – 11 responders, 11 non-responders - are described here; full analysis on all 44 pts will be presented at the meeting. Personalized ctDNA assays were designed targeting 434 to 1000 variants (median 1000) and applied to 66 plasma samples. At W0, 100% (22/22) were positive for ctDNA; 73% (16/22) and 55% (12/22) were positive at W3, and W12, respectively. In pts with T1-T2 tumors median TFx was 4.1e-3(7.8e-6, 3.4e-2) and 4.7e-1(4.3e-2, 9.0e-1) in pts with T3-T4 tumors. TFx decreased from W0 to W3 and from W0 to W12 in responders (Table 1). By W12, ctDNA had cleared in 7/8 pts with RCB 0, 1/3 with RCB 1, 2/8 with RCB 2, and 0/3 with RCB 3. Overall, ctDNA levels were broad with median TFx of 1.5e-3 (range 2.9e-6 to 0.90). Detection limit at 90% power for all tested samples was a median of 8.8e-6 (range 9.9e-7 to 6.8e-3). To investigate whether ctDNA persistence after NAT was associated with BC recurrence, we analyzed a separate group of all 8 pts with known recurrence and with complete data and samples. All pts had persistent ctDNA at W12 (median TFx 6.8e-3, [2.9e-6 to 6.6e-2]). Conclusions. After 3 weeks of NAT for eTNBC, ctDNA TFx decreased, with a 3900-fold change in responders and 18-fold change in non-responders. By W3, TFx for most pts with RCB 0/1 were below the 1 in 10,000 limit of detection for many currently available assays, emphasizing the need for sensitive tests to potentially guide therapy. Additional studies will determine if ctDNA-guided approaches in eTNBC can improve pt outcomes. Table 1: Tumer Fraction and Tumer Fraction Fold Change by Response to Neoadjuvant Therapy Citation Format: Heather A. Parsons, Timothy Blewett, Xiangying Chu, Sainetra Sridhar, Katheryn Santos, Kan Xiong, Vandana Abramson, Ashka Patel, Ju Cheng, Adam M. Brufsky, Justin Rhoades, Jeremy Force, Ruolin Liu, Tiffany A. Traina, Lisa Carey, Mothaffar Rimawi, Ahmed Elkhanany, Vered Stearns, Jennifer M. Specht, Harold Burstein, Antonio C. Wolff, Eric Winer, Nabihah Tayob, Ian Krop, Todd Golub, Erica L. Mayer, Viktor Adalsteinsson. PD11-06 Circulating tumor DNA association with residual cancer burden after neoadjuvant therapy in triple negative breast cancer in TBCRC 030 [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl):Abstract nr PD11-06.

1 citations


Posted ContentDOI
08 Mar 2023-medRxiv
TL;DR: In this paper , the authors examined circulating tumor DNA (ctDNA) and its association with residual cancer burden (RCB) using an ultrasensitive assay in patients with triple-negative breast cancer (TNBC) receiving neoadjuvant chemotherapy (NAT).
Abstract: Purpose: To examine circulating tumor DNA (ctDNA) and its association with residual cancer burden (RCB) using an ultrasensitive assay in patients with triple-negative breast cancer (TNBC) receiving neoadjuvant chemotherapy (NAT). Patients and Methods: We identified responders (RCB-0/1) and matched non-responders (RCB-2/3) from the phase II TBCRC 030 prospective study of neoadjuvant paclitaxel vs. cisplatin in TNBC. We collected plasma samples at baseline, three weeks, and twelve weeks (end of therapy). We created personalized ctDNA assays utilizing MAESTRO mutation enrichment sequencing. We explored associations between ctDNA and RCB status and disease recurrence. Results: Of 139 patients, 68 had complete samples and no additional NAT. Twenty-two were responders and 19 of those had sufficient tissue for whole-genome sequencing. We identified an additional 19 non-responders for a matched case-control analysis of 38 patients using a MAESTRO ctDNA assay tracking 319-1000 variants (median 1000) to 114 plasma samples from 3 timepoints. Overall, ctDNA positivity was 100% at baseline, 79% at week 3, and 55% at week 12. Median tumor fraction (TFx) was 3.7 x 10-4 (range: 7.9 x 10-7 to 4.9 x 10-1). TFx decreased 285-fold from baseline to week 3 in responders and 24-fold in non-responders. Week 12 ctDNA clearance correlated with RCB: clearance was observed in 10/11 patients with RCB-0, 3/8 with RCB-1, 4/15 with RCB-2, and 0/4 with RCB-3. Among 6 patients with known recurrence five had persistent ctDNA at week 12. Conclusion: NAT for TNBC reduced ctDNA TFx by 285-fold in responders and 24-fold in non-responders. In 58% (22/38) of patients, ctDNA TFx dropped below the detection level of a commercially available test, emphasizing the need for sensitive tests. Additional studies will determine if ctDNA-guided approaches can improve outcomes.

1 citations


Posted ContentDOI
04 Feb 2023-bioRxiv
TL;DR: The authors showed that FDX1 regulates protein lipoylation by directly binding to the lipoyl synthase (LIAS) enzyme and not through indirect regulation of cellular Fe-S cluster biosynthesis.
Abstract: Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 regulates protein lipoylation by directly binding to the lipoyl synthase (LIAS) enzyme and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss-of-function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling of cells growing in either normal or low glucose conditions established that FDX1 loss-of-function results in the induction of both compensatory metabolism related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-functions is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.

1 citations


Journal ArticleDOI
TL;DR: In this article , a CRISPR/Cas9 inactivation screen was performed in patient-derived H3K27M-DMG neurospheres using an epigenetically focused sgRNA library and identified several core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex as genetic vulnerabilities.
Abstract: Abstract Epigenetic dysregulation resulting in stalled development plays a crucial role in pediatric cancer tumorigenesis. Diffuse midline gliomas (DMG) are universally fatal pediatric brain cancers refractory to standard of care treatment modalities. These malignancies are driven by heterozygous mutations in genes encoding histone 3 (H3K27M) which create an aberrant epigenetic landscape that keeps glioma cells in an undifferentiated stem-like state. Consequently, targeting epigenetic regulators to restore the epigenome and force glioma cells to exit this stem-like cell state represents a promising new therapeutic strategy for H3K27M-DMG. To interrogate for epigenetic dependencies, we performed a CRISPR/Cas9 inactivation screen in patient-derived H3K27M-DMG neurospheres using an epigenetically focused sgRNA library and identified several core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex as genetic vulnerabilities. Validation assays revealed that knockout of the BAF catalytic subunit BRG1 results in decreased glioma cell proliferation and tumor growth in orthotopic mouse models. Mechanistically, genome wide localization and DNA accessibility studies combined with regulatory network analysis demonstrated that BRG1 controls the transcription factor and enhancer landscapes that maintain H3K27M-DMG cells in a cycling, oligodendrocyte precursor cell-like state. Single cell transcriptome analysis in vitro and immunofluorescence studies in vivo confirmed that genetic perturbation of this chromatin remodeler promotes progression of differentiation along the astrocytic lineage. Similarly, pharmacological suppression of BRG1 activity, using both catalytic inhibitors as well as recently developed degraders, opposes tumor cell proliferation, stimulates cell state transition, and improves overall survival of patient-derived xenograft models. Interestingly, these effects seem to be restricted to H3K27M mutant glioma, as H3 wildtype glioma cells were less sensitive to BRG1 inhibition both in vitro and in vivo. In summary, we demonstrate that the BAF complex contributes to the maintenance of glioma cells in a proliferative stem-like state and that its therapeutic inhibition has translational potential for children bearing H3K27M-DMG.


Posted ContentDOI
06 May 2023-bioRxiv
TL;DR: In this article , the authors performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation, which was associated with the MYC family oncogenes.
Abstract: A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets. Highlights Ribo-seq reveals widespread translation of non-canonical ORFs in medulloblastoma High-resolution CRISPR tiling reveals uORF functions in medulloblastoma ASNSD1-uORF controls downstream pathways with the prefoldin-like complex ASNSD1-uORF is necessary for medulloblastoma cell survival

Journal ArticleDOI
TL;DR: Martin-Alonso et al. as mentioned in this paper presented a liquid biopsy priming agent that is given prior to a blood draw to increase the abundance of circulating tumor DNA (ctDNA) in circulation.
Abstract: Liquid biopsy measurements, such as analysis of circulating tumor DNA (ctDNA) shed by cancer cells, have garnered significant attention for their potential to empower the field of precision oncology. Given that ctDNA tests could enable minimally invasive monitoring and molecular profiling of disease, they are being investigated for use in earlier detection via pan-cancer screening tests, for tracking tumor evolution to inform therapy selection, and for making treatment decisions during minimal residual disease surveillance. However, a typical blood draw carries ultra-low levels of ctDNA (as low as 1.7 copies of the tumor genome in 15mL of blood for a 1cm lung tumor), and this fundamentally limits the sensitivity and the clinical utility of ctDNA-testing in many settings. To push beyond current ctDNA detection limits, we present a first-in-class liquid biopsy priming agent that is given prior to a blood draw to increase the abundance of ctDNA in circulation. Our priming agent consists of liposomes that transiently block the uptake of cell free DNA (cfDNA) by macrophages in the liver, resulting in increased cfDNA available for diagnostic analysis in blood. Using an in vitro 2D assay, we first identified a DSPE-based liposomal formulation that inhibits the uptake of cfDNA by two independent murine macrophage cell lines. Next, we injected our liposomal agent into healthy or tumor-bearing mice and collected blood for further analysis. We found that in healthy mice priming increases the half-life and the recovery of cfDNA from a blood draw, assayed via qPCR. In tumor-bearing mice, the priming agent increases the recovery of ctDNA by up to 60-fold (P = 0.0103) and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. Importantly, cfDNA levels in mice return to baseline within five hours of agent administration and repeated dosing shows no evidence of toxicity. Our priming strategy should be of interest for precision oncology applications, including early detection, longitudinal monitoring of therapeutic response, and surveillance for minimal residual disease. This tumor-agnostic priming agent should also improve the performance of ctDNA analytical techniques other than mutational profiling and may even increase the recovery of cfDNA from other body fluids beyond plasma. Moreover, we believe that this work sets a precedent for the potential development of priming agents for liquid biopsy at large across other analytes. In summary, here we present a first-in-class liquid biopsy priming agent capable of improving the sensitivity and the robustness of ctDNA testing in tumor-bearing mice by modulating liver cfDNA clearance. We envision that further development of liquid biopsy priming agents will signify a major step forward for the successful deployment of precision oncology tools across all stages of cancer management. Citation Format: Carmen Martin-Alonso, Shervin Tabrizi, Kan Xiong, Ahmet Bekdemir Bekdemir, Sahil Patel, Zhenyi An, Timothy Blewett, Sainetra Sridhar, Douglas Shea, Ava Amini, Jesse D. Kirkpatrick, Jin Bae, Eugenia Roberts, Ruolin Liu, Justin Rhoades, Todd Golub, J. Christopher Love, Viktor A. Adalsteinsson, Sangeeta N. Bhatia. A liposomal priming agent increases the sensitivity of liquid biopsies. [abstract]. In: Proceedings of the AACR Special Conference: Precision Prevention, Early Detection, and Interception of Cancer; 2022 Nov 17-19; Austin, TX. Philadelphia (PA): AACR; Can Prev Res 2023;16(1 Suppl): Abstract nr PR007.

Journal ArticleDOI
TL;DR: Rauh et al. as discussed by the authors proposed a novel, potent, and selective MCL1 inhibitor which specifically induces apoptosis in cancer cells, which is an anti-apoptotic protein that is frequently amplified or overexpressed in cancer and confers resistance to relevant standard of care.
Abstract: MCL1 is an anti-apoptotic protein inhibiting cancer cell death. It is frequently amplified or overexpressed in cancer and confers resistance to relevant standard of care. Therefore, MCL1 is an attractive target to potentially re-sensitize tumors to conventional chemotherapy and targeted agents. Here we describe ANJ810 as a novel, potent, and selective MCL1 inhibitor which specifically induces apoptosis in cancer cells. ANJ810 potently and reversibly binds to the BH3-binding groove of human MCL1 (KD = 0.3 nM), thereby inhibiting the interaction with the BH3-only protein NOXA (IC50 = 0.4 nM). ANJ810 shows a 4-log-fold greater selectivity to MCL1 over other anti-apoptotic proteins like Bcl-xL or Bcl-2. In cells, ANJ810 treatment rapidly (< 15 min) disrupts the MCL1-BAK interaction with an IC50 < 10 nM, resulting in caspase-3 activation and cancer cell death. Knockout of BAK and BAX completely rescues cells from ANJ810 induced killing, indicating that initiation of cell death occurs through the intrinsic apoptotic pathway. Screening over 750 cell lines (PRISM), we found that ANJ810 induced anti-cancer activity in 222 cell lines with an IC50 < 1 μM across multiple solid and hematological cancers, including breast, lung, melanoma, sarcoma, lymphoma, and leukemia. The top genomic feature that correlates with sensitivity to ANJ810 treatment is the ratio of Bcl-xL/BAK expression. A key design principle of ANJ810 is its rapid systemic clearance to potentially minimize exposure-driven toxicities associated with MCL1 inhibition. ANJ810 induces efficient cancer cell killing within 4 hours in vitro but has no impact on cell viability or troponin I release in hiPSC-derived cardiomyocytes at supra-pharmacologic concentrations. In vivo, i.v. bolus injections of ANJ810 lead to short plasma residence time, yet are efficacious in xenograft models of multiple myeloma, DLBCL, NSCLC and HCC. ANJ810 will test the hypothesis in human clinical trials that short-term inhibition of MCL1 can overcome tumor resistance with an acceptable safety profile to improve current standard of care. Citation Format: Ulrike Rauh, Guo Wei, Michael Serrano-Wu, Georgios Kosmidis, Stefan Kaulfuss, Franziska Siegel, Kai Thede, James McFarland, Christopher Lemke, Nicolas Werbeck, Katrin Nowak-Reppel, Sabine Pillari, Stephan Menz, Matthias Ocker, Brian Hubbard, Virendar Kaushik, Karl Ziegelbauer, Todd Golub. ANJ810 is a highly selective novel MCL1 inhibitor with optimized in vivo clearance showing robust efficacy in preclinical solid and hematological tumor models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 506.

Posted ContentDOI
14 Jan 2023-bioRxiv
TL;DR: In this paper , an intravenous priming agent that is given prior to a blood draw to increase the abundance of cell-free DNA (cfDNA) in circulation is reported. But their sensitivity remains limited by the scarcity of cellfree DNA in blood.
Abstract: Liquid biopsies are enabling minimally invasive monitoring and molecular profiling of diseases across medicine, but their sensitivity remains limited by the scarcity of cell-free DNA (cfDNA) in blood. Here, we report an intravenous priming agent that is given prior to a blood draw to increase the abundance of cfDNA in circulation. Our priming agent consists of nanoparticles that act on the cells responsible for cfDNA clearance to slow down cfDNA uptake. In tumor-bearing mice, this agent increases the recovery of circulating tumor DNA (ctDNA) by up to 60-fold and improves the sensitivity of a ctDNA diagnostic assay from 0% to 75% at low tumor burden. We envision that this priming approach will significantly improve the performance of liquid biopsies across a wide range of clinical applications in oncology and beyond.

Journal ArticleDOI
TL;DR: In this article , the functional impact of translation of non-canonical open reading frames (ORFs) across medulloblastoma model systems was investigated, and it was shown that these ORFs are commonly translated in medully-motivated pediatric cancers and patient tumors.
Abstract: Abstract High-risk medulloblastoma is one of the most recalcitrant pediatric cancers, and children with MYC-amplified disease frequently succumb to relapsed disease. Extensive analyses of the coding genome in this disease have characterized additional somatic events in some subsets of patients, though most tumors lack targetable mutations and do not yield insights regarding their aggressive behavior. At the same time, medulloblastoma is known to exhibit extensive rewiring of translational control in MYC-driven tumors, consistent with recent genetic evidence that the impact of this transcription factor on control of mRNA translation may be the most critical aspect of its function during tumorigenesis. Therefore, to propose previously unknown mechanisms for this disease, we have investigated the functional impact of translation of non-canonical open reading frames (ORFs) across medulloblastoma model systems. We demonstrate that these ORFs are commonly translated in medulloblastoma model systems and patient tumors, correlating with disease subtype. Using genome-wide CRISPR/Cas9 screens, we found that ORFs are frequently essential for cell survival in medulloblastoma and describe widespread reliance on upstream open reading frames (uORFs) in particular. From these, we identify a uORF in the ASNSD1 gene that is selectively upregulated and required for maintenance of cell survival by coordinating the function of the prefoldin-like complex, a poorly understood complex implicated in post-translational control. Together, our findings provide a blueprint for oncogenic uORFs as critical disease mediators both in medulloblastoma and, by extension, human cancers more broadly.