scispace - formally typeset
Search or ask a question

Showing papers by "Triparna Sen published in 2021"



Journal ArticleDOI
TL;DR: In this article, the authors show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after immune checkpoint blockade (ICB) therapy, and demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages.

68 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm and enhanced expression of genes involved in PRC2 complex and PI3K/AKT and NOTCH pathways.
Abstract: Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUADs) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre-/post-transformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre-/post-transformation samples, support that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacological inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of neuroendocrine transformation in lung cancer.

18 citations


Journal ArticleDOI
TL;DR: In this article, the authors provided the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.
Abstract: BACKGROUND Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.

14 citations


Journal ArticleDOI
05 Oct 2021-iScience
TL;DR: In this paper, the role of mitogen-activated protein kinase (MAPK) pathway and how it interacts with other signaling pathways in small cell lung cancer (SCLC) was elucidated.

9 citations


Posted ContentDOI
27 Sep 2021-bioRxiv
TL;DR: In this paper, the authors report a scTCR/RNA-seq dataset of 162,062 single T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients who underwent resections for progressing lung cancers after immune checkpoint blockade (ICB).
Abstract: Paired T cell receptor and RNA single cell sequencing (scTCR/RNA-seq) has allowed for enhanced resolution of clonal T cell dynamics in cancer. Here, we report a scTCR/RNA-seq dataset of 162,062 single T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients who underwent resections for progressing lung cancers after immune checkpoint blockade (ICB). We found marked regional heterogeneity in tumor persistence that was associated with heterogeneity in CD4 and CD8 T cell phenotypes; regions with persistent cancer cells were enriched for follicular helper CD4 T cells (TFH), regulatory T cells (Treg), and exhausted CD8 T cells. Clonal analysis demonstrated that highly-expanded T cell clones were predominantly of the CD8 subtype, were ubiquitously present across all sampled regions, found in the peripheral circulation, and expressed gene signatures of ‘large’ and ‘dual-expanded’ clones that have been predictive of response to ICB. Longitudinal tracking of CD8 T cell clones in the peripheral blood revealed that the persistence of ubiquitous CD8 T cell clones, as well as phenotypically distinct clones with tumor-reactive features, correlated with systemic tumor control. Finally, tracking CD8 T cell clones across tissues revealed the presence of TCF-1+ precursor exhausted CD8 T cells in tumor draining LNs that were clonally linked to expanded exhausted CD8 T cells in tumors. Altogether, this comprehensive scTCR/RNA-seq dataset with regional, longitudinal, and clonal resolution provides fundamental insights into the tissue distribution, persistence, and differentiation trajectories of ICB-responsive T cells that underlie clinical responses to ICB.

6 citations


Journal ArticleDOI
TL;DR: In this paper, replication stress response proteins in small cell lung cancer activate the innate immune cGAS-STING pathway, leading to augmentation of immunotherapy's antitumor response.
Abstract: Targeting replication stress response proteins in small cell lung cancer activates the innate immune cGAS-STING pathway leading to augmentation of immunotherapy’s antitumor response.

3 citations


Journal ArticleDOI
18 Jun 2021
TL;DR: Proper calculation methods for library representation are described and how to overcome potential issues often encountered by researchers are shown.
Abstract: Summary This standardized protocol describes the preparation of PCR amplified and purified samples from human cell lines passaged and collected from CRISPR screening. High-quality samples can be used to perform next-generation sequencing (NGS) to uncover changes in sgRNA abundance from the timepoint at which library-transduced cells are selected to the timepoint when the screen is ended. Here, we describe proper calculation methods for library representation and show how to overcome potential issues often encountered by researchers. For complete information on the use and execution of this protocol, please refer to Wohlhieter et al. (2020) .

2 citations


Journal ArticleDOI
TL;DR: This atlas of SCLC illustrates how canonical subtypes and a novel PLCG2-high recurrent tumor subclone enlist diverse gene programs to create tumor heterogeneity and facilitate metastasis in a profoundly immunosuppressed TME.
Abstract: 8509Background: Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively),...

2 citations


Posted ContentDOI
23 Oct 2021-bioRxiv
TL;DR: In this paper, a positive selection genome-wide CRISPR/Cas9 loss of function screen was performed to identify genes required for LSD1 inhibitor sensitivity in small cell lung cancers (SCLCs).
Abstract: Some small cell lung cancers (SCLCs) are highly sensitive to inhibitors of the histone demethylase LSD1. LSD1 inhibitors are thought to induce their anti-proliferative effects by blocking neuroendocrine differentiation, but the mechanisms by which LSD1 controls the SCLC neuroendocrine phenotype are not well understood. To identify genes required for LSD1 inhibitor sensitivity in SCLC, we performed a positive selection genome-wide CRISPR/Cas9 loss of function screen and found that ZFP36L1, an mRNA-binding protein that destabilizes mRNAs, is required for LSD1 inhibitor sensitivity. LSD1 binds and represses ZFP36L1 and upon LSD1 inhibition, ZFP36L1 expression is restored, which is sufficient to block the SCLC neuroendocrine differentiation phenotype and induce a non-neuroendocrine inflammatory phenotype. Mechanistically, ZFP36L1 binds and destabilizes SOX2 and INSM1 mRNAs, two transcription factors that are required for SCLC neuroendocrine differentiation. This work identifies ZFP36L1 as an LSD1 target gene that controls the SCLC neuroendocrine phenotype and demonstrates that modulating mRNA stability of lineage transcription factors controls neuroendocrine to non-neuroendocrine plasticity.

1 citations